Cho \(\dfrac{a+b}{a-c}\)=\(\dfrac{a+c}{a-c}\) với a\(\ne\)b, a\(\ne\)c và a\(\ne\)0. C/m: b=c
biết a2 +ab+\(\dfrac{b^2}{3}\) =2023; c2+\(\dfrac{b^2}{3}\) =2000;a2+ac+c2=23 và a\(\ne\) 0;c\(\ne\)0;a\(\ne\) -c
c/m \(\dfrac{2c}{3}\) =\(\dfrac{b+c}{a+c}\)
a^2+ab+b^2/3=c^2+b^2/3+a^2+ac+c^2
=>ab=2c^2+ac
=>2c/a=(b+c)/(a+c)
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)(b\(\ne\)0;d\(\ne\)0)
a) \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
b)\(\dfrac{a+b}{a}=\dfrac{c+d}{d}\)
a: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
hay \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
Cho các số thực a,b,c thỏa mãn a+b+c=0,a2+b2\(\ne\)c2,b2+c2\(\ne\)a2,c2+a2\(\ne\)b2.Tính giá trị biểu thức P=\(\dfrac{a^2}{a^2-b^2-c^2}\)+\(\dfrac{b^2}{b^2-c^2-a^2}\)+\(\dfrac{c^2}{c^2-a^2-b^2}\)
\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)
\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)
Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
1.Cho a,b,c,d,e,f \(\ne\) 0 thoả mãn : \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}\)
Cmr:\(\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5=\dfrac{a}{f}\) với (a+b+c+d+e+f \(\ne\)0)
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}=\dfrac{a+b+c+d+e}{b+c+d+e+f}=k\)
Ta có:
\(\dfrac{a}{f}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}.\dfrac{e}{f}=k^5=\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5\)
Cho A = \(\dfrac{a^2}{bc}\) + \(\dfrac{b^2}{ac}\) + \(\dfrac{c^{2^{ }}}{ab}\) với a, b, c \(\ne\)0; thỏa mãn a + b +c = 0 thì giá trị của A =?
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) ( a,b,c khác 0, \(a\ne b,c\ne d\))
chứng minh rằng \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(VT=\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)
\(VP=\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cho \(\dfrac{1}{c}=\dfrac{1}{2}.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)(với a,b,c \(\ne\)0, b \(\ne\)c) . Chứng minh rằng \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)
\(\frac{2}{c}=\frac{a+b}{ab}\)
\(\Rightarrow2ab=ac+bc\)
\(\Rightarrow ac-ab=ab-bc\)
\(\Rightarrow a.\left(c-b\right)=b.\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)( đpcm )
oOo Thiếu gia ác ma đừng hôn tôi oOo có gì ko
a) Cho các số a, b, c thỏa mãn abc\(\ne\) 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) =\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}\)=\(\dfrac{1}{3}\). Tính S= a + b + c + 2021.
Cho \(b\ne-d;b\ne-3d;b\ne0;d\ne0\) và \(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}\) . Chứng minh : \(\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có: \(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}\left(b\ne-d;b\ne-3d;b\ne0;d\ne0\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
+, \(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}=\dfrac{a+3c-\left(a+c\right)}{b+3d-\left(b+d\right)}=\dfrac{a+3c-a-c}{b+3d-b-d}=\dfrac{2c}{2d}=\dfrac{c}{d}\)
Khi đó: \(\dfrac{a+c}{b+d}=\dfrac{c}{d}\)
+, \(\dfrac{a+c}{b+d}=\dfrac{c}{d}=\dfrac{a+c-c}{b+d-d}=\dfrac{a}{b}\) (đpcm)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}=\dfrac{a+3c-\left(a+c\right)}{b+3d-\left(b+d\right)}=\dfrac{2c}{2d}=\dfrac{c}{d}\) (1)
\(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}=\dfrac{3a+3c}{3b+3d}=\dfrac{a+3c-\left(3a+3c\right)}{b+3d-\left(3b+3d\right)}=\dfrac{-2a}{-2b}=\dfrac{a}{b}\) (2)
(1);(2) \(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)