Cho a, b, c là các số ≠ 0 thỏa mãn:
\(\dfrac{a+b-2021c}{c}=\dfrac{b+c-2021a}{a}=\dfrac{c+a-2021b}{b}\).
Tính \(B=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
cho các số a,b,c thỏa mãn\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}.TínhA=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\).Mong các cậu giúp>_<
Cho abc \(\ne\) 0 và dãy tỉ số bằng nhau: \(\dfrac{5a+b+3c}{2a+c}=\dfrac{a+5b+c}{2b}=\dfrac{a+3b+3c}{b+c}\)
Tính: M = \(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho \(abc\ne0\) và \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}.\) Tính \(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
Giúp ik
Mọi ngừi giúp e bài cuối cùng dzới ah
Cho abc ≠ 0 và dãy tỉ số bằng nhau: \(\dfrac{5a+b+3c}{2a+c}=\dfrac{a+5b+c}{2b}=\dfrac{a+3b+3c}{b+c}\)
Tính: P = \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
Cho a,b,c là 3 số thực khác 0 sao cho:\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Tính : B=\(\left(1+\dfrac{b}{a}\right).\left(1+\dfrac{a}{c}\right).\left(1+\dfrac{c}{b}\right)\)
Cho a + b + c = 2001 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{10}\)
Tính: \(s=\dfrac{a}{b+a}+\dfrac{b}{c+a}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Bài 1: CMR:
a) \(\dfrac{\left(a-b\right)^3}{\left(c-d\right)^3}=\dfrac{3a^3+2b^3}{3c^3+2d^3}\)
b)\(\dfrac{a^{10}+b^{10}}{\left(a+b\right)^{10}}=\dfrac{c^{10}+d^{10}}{\left(c+d\right)^{10}}\)
c)\(\dfrac{a^{2017}}{b^{2017}}=\dfrac{\left(a-c\right)^{2017}}{\left(b-d\right)^{2017}}\)
Bài 2: a) Cho: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\) và a,b,c\(\ne\)0;a+b+c\(\ne\)0
So sánh a,b,c
b) Cho \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\) và x,y,z\(\ne\)0;x+y+z\(\ne\)0
Tính: \(\dfrac{x^{333}.y^{666}}{z^{999}}\)
c) Cho \(ac=b^2;ab=c^2\left(a+b+c\ne0\right)\)
Tính \(\dfrac{b^{333}}{c^{111}.a^{222}}\)
Cho a.,b,c là 3 số thực khác 0 , thỏa mãn điều kiện : \(\dfrac{a+b-c}{c}\)- \(\dfrac{b+c-a}{a}\)-\(\dfrac{c+a-b}{b} \) Hãy tinh giá trị của biểu thức B= (1+\(\dfrac{b}{a}\))(1+\(\dfrac{a}{c}\))(1+\(\dfrac{c}{b }\))