Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
My Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 22:00

1: Sửa đề: 2/x+2

\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)

=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

=>4x-3=-3x-6

=>7x=-3

=>x=-3/7(nhận)

2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)

=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)

=>-6x^2+6=2(3x^2-10x+3)

=>-6x^2+6=6x^2-20x+6

=>-12x^2+20x=0

=>-4x(3x-5)=0

=>x=5/3(nhận) hoặc x=0(nhận)

3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)

=>x*19/6=35/12

=>x=35/38

Lê Lê
Xem chi tiết
Hoàng Huy
Xem chi tiết
Huỳnh Thị Thanh Ngân
29 tháng 7 2021 lúc 9:23

\(\dfrac{4x^2-3x+5}{x^3-1}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)

\(\Leftrightarrow\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)

\(ĐKXĐ:x\ne1\)

\(\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{(1+2x)\left(x-1\right)}{(x^2+x+1)\left(x-1\right)}-\dfrac{6\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\)

\(\Rightarrow4x^2-3x+5-\left(1+2x\right)\left(x-1\right)-6\left(x^2+x+1\right)\)

\(\Rightarrow4x^2-3x+5-\left(x-1+2x^2-2x\right)-6x^2-6x-6\)

\(\Rightarrow4x^2-3x+5-x+1-2x^2+2x-6x^2-6x-6\)

\(\Rightarrow-4x^2-8x\)

⇒-4x(x-4)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
29 tháng 6 2017 lúc 8:47

Phép chia các phân thức đại số

Thảo Bùi
Xem chi tiết
Nguyễn Trần Thành Đạt
3 tháng 5 2021 lúc 12:27

Không có dấu "=" hay như nào đâu giải tìm x được

Cíu iem
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 11 2021 lúc 23:10

a: \(A=\dfrac{x^2+2xy+y^2-x^2+xy+2y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{3y^2+3xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{3y}{x-y}\)

Ánh Ngọc Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2022 lúc 22:47

a: \(=\dfrac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)

b: \(=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)

c: \(=\dfrac{2x^2-3x-9-x^2+3x+x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{2x^2+6x}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x}{x-3}\)

Nguyễn Fang Long
Xem chi tiết
Kyun Diệp
Xem chi tiết
Nguyễn Thành Trương
25 tháng 2 2019 lúc 19:12

Hỏi đáp Toán

Nguyễn Thành Trương
25 tháng 2 2019 lúc 19:06

Hỏi đáp Toán

Kyun Diệp
25 tháng 2 2019 lúc 2:04

Nguyễn TrươngNguyễn Việt LâmNguyenTruong Viet TruongKhôi BùiAkai HarumaÁnh LêDƯƠNG PHAN KHÁNH DƯƠNGPhùng Tuệ Minhsaint suppapong udomkaewkanjana

Buddy
Xem chi tiết
HT.Phong (9A5)
23 tháng 7 2023 lúc 15:37

\(\dfrac{2}{\left(x+1\right)^2}-\dfrac{1}{x^2-1}\)

\(=\dfrac{2}{\left(x+1\right)^2}-\dfrac{1}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{2\left(x-1\right)}{\left(x+1\right)^2\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)^2\left(x-1\right)}\)

\(=\dfrac{2\left(x-1\right)-x-1}{\left(x+1\right)^2\left(x-1\right)}\)

\(=\dfrac{2x-2-x-1}{\left(x+1\right)^2\left(x-1\right)}\)

\(=\dfrac{x-3}{\left(x+1\right)^2\left(x-1\right)}\)

⇒Chọn B

@DanHee
23 tháng 7 2023 lúc 15:38

\(\dfrac{2}{\left(x+1\right)^2}-\dfrac{1}{x^2-1}\\ =\dfrac{2}{\left(x+1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{2.\left(x-1\right)-\left(x+1\right)}{\left(x+1\right)^2.\left(x-1\right)}\\ =\dfrac{2x-2-x-1}{\left(x+1\right)^2.\left(x-1\right)}\\ =\dfrac{x-3}{\left(x+1\right)^2\left(x-1\right)}\\ =>B\)