\(x^2+x+1+\dfrac{x^3}{1-x}\)
Giải các pt sau:
1)\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+1}=\dfrac{3}{2-x}\)
2)\(\dfrac{3x+1}{1-3x}+\dfrac{3+x}{3-x}=2\)
3)\(\dfrac{8x-2}{3}=1+\dfrac{5-2x}{4}\)
4)
\(\dfrac{x}{x+1}-\dfrac{2x+3}{x}=\dfrac{-3}{x+1}-\dfrac{3}{x}\)
5)\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
6)\(\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
giúp mình với cám ơn
1: Sửa đề: 2/x+2
\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)
=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=>4x-3=-3x-6
=>7x=-3
=>x=-3/7(nhận)
2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)
=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)
=>-6x^2+6=2(3x^2-10x+3)
=>-6x^2+6=6x^2-20x+6
=>-12x^2+20x=0
=>-4x(3x-5)=0
=>x=5/3(nhận) hoặc x=0(nhận)
3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)
=>x*19/6=35/12
=>x=35/38
1) \(\dfrac{1}{x^2+6x+9}+\dfrac{1}{6x-x^2+9}+\dfrac{x}{x^2-9}\) 2) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\) 3) \(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\)
thực hiện phép tính
\(\dfrac{4x^2-3x+5}{x^3-1}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(\dfrac{15x-11}{x^2+2x-3}-\dfrac{3x-2}{x-1}-\dfrac{2x+3}{3+x}\)
\(\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}-\dfrac{2x\left(1-x\right)}{9-x^2}\)
\(\dfrac{4x^2-3x+5}{x^3-1}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(\Leftrightarrow\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(ĐKXĐ:x\ne1\)
\(\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{(1+2x)\left(x-1\right)}{(x^2+x+1)\left(x-1\right)}-\dfrac{6\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\)
\(\Rightarrow4x^2-3x+5-\left(1+2x\right)\left(x-1\right)-6\left(x^2+x+1\right)\)
\(\Rightarrow4x^2-3x+5-\left(x-1+2x^2-2x\right)-6x^2-6x-6\)
\(\Rightarrow4x^2-3x+5-x+1-2x^2+2x-6x^2-6x-6\)
\(\Rightarrow-4x^2-8x\)
⇒-4x(x-4)
Rút gọn các biểu thức (chú ý đến thứ tự thực hiện các phép tính)
a) \(\dfrac{x+1}{x+2}:\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\)
b) \(\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)\)
c) \(\dfrac{x+1}{x+2}.\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\)
d) \(\dfrac{x+1}{x+2}.\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)\)
e) \(\dfrac{x+1}{x+2}:\dfrac{x+2}{x+3}.\dfrac{x+3}{x+1}\)
f) \(\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}.\dfrac{x+3}{x+1}\right)\)
tìm x
\(\dfrac{-4}{x-1}\) \(\dfrac{3}{x-1}\) \(\dfrac{2x+1}{x-3}\) \(\dfrac{x+3}{x-2}\)
\(\dfrac{4x-1}{3-x}\) \(\dfrac{3x+3}{x-1}\) \(\dfrac{x-2}{x+3}\) \(\dfrac{2x}{x-2}\)
Không có dấu "=" hay như nào đâu giải tìm x được
Rút gọn:
a) A= \(\dfrac{x+y}{x-y}-\dfrac{x}{x+y}+\dfrac{2y^2}{x^2-y^2}\)
b) B= \(\dfrac{x}{x-2}-\dfrac{10}{\left(x-2\right)\left(x+3\right)}-\dfrac{x-1}{x+3}\)
c) C= \(\dfrac{1}{x-1}-\dfrac{x-1}{x^2+x+1}-\dfrac{3}{x^3-1}\)
a: \(A=\dfrac{x^2+2xy+y^2-x^2+xy+2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{3y^2+3xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{3y}{x-y}\)
Rút gọn
a)\(\dfrac{x}{x+1}+\dfrac{1}{x-1}-\dfrac{2x}{1-x^2}\)
b)\(\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}\)
c)\(\dfrac{2x^2-3x-9}{x^2-9}-\dfrac{x}{x+3}-\dfrac{x+3}{3-x}\)
d)\(\dfrac{x+3}{x-2}+\dfrac{x+2}{1-x}-\dfrac{4x-x^2}{x^2-3x+2}\)
giúp mik vs
cảm ơn <3
a: \(=\dfrac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)
b: \(=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c: \(=\dfrac{2x^2-3x-9-x^2+3x+x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x}{x-3}\)
a)\(\dfrac{2}{x+2}-\dfrac{1}{x+3}+\dfrac{2x+5}{\left(x+2\right)\left(x+3\right)}\)
b)\(\dfrac{2}{x+1}-\dfrac{1}{x+5}+\dfrac{2x+6}{\left(x+5\right)\left(x+1\right)}\)
c)\(\dfrac{-6}{x^2-9}-\dfrac{1}{x+3}+\dfrac{3}{x-3}\)
d)\(\dfrac{x}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\)
Giải các phương trình có chứa ẩn ở mẫu sau:
a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\)
b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\)
d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\)
f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\)
g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\)
h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)
i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\)
j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\)
l, \(\dfrac{2}{x+1}-\dfrac{1}{xx-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
m, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
n, \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
o, \(\dfrac{x-2}{x+2}+\dfrac{3}{x-2}=\dfrac{x^2-11}{x^2-4}\)
p, \(\dfrac{x+4}{x+1}+\dfrac{x}{x-1}=\dfrac{2x^2}{x^2-1}\)
z, \(\dfrac{2x}{x-1}+\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}\)
q, \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)
r, \(\dfrac{1}{x-3}+2=\dfrac{5}{x-1}+x\)
s, \(\dfrac{2}{x^2+4x-21}=\dfrac{3}{x-3}\)
Nguyễn TrươngNguyễn Việt LâmNguyenTruong Viet TruongKhôi BùiAkai HarumaÁnh LêDƯƠNG PHAN KHÁNH DƯƠNGPhùng Tuệ Minhsaint suppapong udomkaewkanjana
Kết quả của phép trừ \(\dfrac{2}{{{{(x + 1)}^2}}} - \dfrac{1}{{{x^2} - 1}}\) là:
A. \(\dfrac{{3 - x}}{{(x - 1){{(x + 1)}^2}}}\)
B. \(\dfrac{{x - 3}}{{(x - 1){{(x + 1)}^2}}}\)
C. \(\dfrac{{x - 3}}{{{{(x + 1)}^2}}}\)
D. \(\dfrac{1}{{(x - 1){{(x + 1)}^2}}}\)
\(\dfrac{2}{\left(x+1\right)^2}-\dfrac{1}{x^2-1}\)
\(=\dfrac{2}{\left(x+1\right)^2}-\dfrac{1}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2\left(x-1\right)}{\left(x+1\right)^2\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)^2\left(x-1\right)}\)
\(=\dfrac{2\left(x-1\right)-x-1}{\left(x+1\right)^2\left(x-1\right)}\)
\(=\dfrac{2x-2-x-1}{\left(x+1\right)^2\left(x-1\right)}\)
\(=\dfrac{x-3}{\left(x+1\right)^2\left(x-1\right)}\)
⇒Chọn B
\(\dfrac{2}{\left(x+1\right)^2}-\dfrac{1}{x^2-1}\\ =\dfrac{2}{\left(x+1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{2.\left(x-1\right)-\left(x+1\right)}{\left(x+1\right)^2.\left(x-1\right)}\\ =\dfrac{2x-2-x-1}{\left(x+1\right)^2.\left(x-1\right)}\\ =\dfrac{x-3}{\left(x+1\right)^2\left(x-1\right)}\\ =>B\)