\(\sqrt[3]{3\sqrt{2}+7}-\sqrt[3]{3\sqrt{2}-7}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
Ta có:
\(R=\)\(\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(=\)\(\dfrac{\sqrt{10}+3\sqrt{2}}{5+\sqrt{5}}+\dfrac{\sqrt{10}-3\sqrt{2}}{5-\sqrt{5}}\)
\(=\dfrac{4\sqrt{2}}{\sqrt{5}\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\dfrac{4\sqrt{2}}{4\sqrt{5}}=\sqrt{\dfrac{2}{5}}\)
Làm câu S tương tự như này rồi đối chiếu kết quả nha
a : \(\sqrt{5+2\sqrt{6}}-\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)
b : \(\dfrac{\sqrt{7}-2\sqrt{7}}{2-\sqrt{7}}+\dfrac{6}{\sqrt{7}+1}+\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right)\)
a: \(\sqrt{5+2\sqrt{6}}-\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\left|\sqrt{2}-\sqrt{3}\right|\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
b: Sửa đề: \(\dfrac{7-2\sqrt{7}}{2-\sqrt{7}}+\dfrac{6}{\sqrt{7}+1}+\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right)\)
\(=\dfrac{\sqrt{7}\left(\sqrt{7}-2\right)}{-\left(\sqrt{7}-2\right)}+\dfrac{6\left(\sqrt{7}-1\right)}{6}+18-12\)
\(=-\sqrt{7}+\sqrt{7}-1+6=5\)
so sánh
\(;\sqrt{2}+1vs\sqrt[3]{7+5\sqrt{2};}\) \(-6\sqrt[3]{7}\&7\sqrt[3]{\left(-6\right)}\)\(;\sqrt[3]{4}+\sqrt[3]{7}\&\sqrt[3]{11}\)\(;\sqrt[3]{10}-2vs\sqrt[3]{2}\)
a) \(\sqrt[3]{7+5\sqrt{2}}=\sqrt{2}+1\)
b) \(-6\sqrt[3]{7}=\sqrt[3]{\left(-6\right)^3\cdot7}=\sqrt[3]{-1512}\)
\(7\sqrt[3]{-6}=\sqrt[3]{7^3\cdot\left(-6\right)}=\sqrt[3]{-2058}\)
mà -1512>-2058
nên \(-6\sqrt[3]{7}>7\cdot\sqrt[3]{-6}\)
a) A = (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)) + (sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) b) B = 2sqrt(27) + sqrt((1 - sqrt(3)) ^ 2) - 4/(sqrt(2))
a: \(A=\dfrac{\left(\sqrt{7}+\sqrt{3}\right)^2+\left(\sqrt{7}-\sqrt{3}\right)^2}{4}\)
\(=\dfrac{10+2\sqrt{21}+10-2\sqrt{21}}{4}=\dfrac{20}{4}=5\)
b: \(B=6\sqrt{3}+\sqrt{3}-1-2\sqrt{2}\)
\(=7\sqrt{3}-2\sqrt{2}-1\)
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(\sqrt{2+\sqrt{2}}.\sqrt{3+\sqrt{7+\sqrt{2}}}.\sqrt{3+\sqrt{6+\sqrt{7+\sqrt{2}}}}.\sqrt{3-\sqrt{6+\sqrt{7+\sqrt{2}}}}\)
a: \(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=1\)
b: \(=\sqrt{2+\sqrt{2}}\cdot\sqrt{3+\sqrt{7+\sqrt{2}}}\cdot\sqrt{9-6-\sqrt{7+\sqrt{2}}}\)
\(=\sqrt{2+\sqrt{2}}\cdot\sqrt{9-7-\sqrt{2}}\)
\(=\sqrt{2}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Bài : Thu gọn
1) \(\dfrac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}\)
2) \(\dfrac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}\)
3) \(\dfrac{7+4\sqrt{3}}{2+\sqrt{3}}\)
4) \(\dfrac{16-6\sqrt{7}}{\sqrt{7}-3}\)
5) \(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
6) \(\dfrac{\left(\sqrt{3}+2\sqrt{5}\right)^2-8\sqrt{15}}{\sqrt{6-2\sqrt{10}}}\)
1.
\(\frac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}=\frac{3\sqrt{5}-\sqrt{5}.\sqrt{15}}{\sqrt{15}-3}=\frac{-\sqrt{5}(\sqrt{15}-3)}{\sqrt{15}-3}=-\sqrt{5}\)
2.
\(\frac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{2+2\sqrt{2.3}+3}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{(\sqrt{2}+\sqrt{3})^2}}{\sqrt{2}+\sqrt{3}}\)
\(=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}=1\)
3.
\(\frac{7+4\sqrt{3}}{2+\sqrt{3}}=\frac{2^2+2.2\sqrt{3}+3}{2+\sqrt{3}}=\frac{(2+\sqrt{3})^2}{2+\sqrt{3}}=2+\sqrt{3}\)
4.
\(\frac{16-6\sqrt{7}}{\sqrt{7}-3}=\frac{3^2-2.3\sqrt{7}+7}{\sqrt{7}-3}=\frac{(\sqrt{7}-3)^2}{\sqrt{7}-3}=\sqrt{7}-3\)
5.
\(\frac{(\sqrt{3}-\sqrt{2})^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\frac{3+2+2\sqrt{2.3}}{\sqrt{3}+\sqrt{2}}=\frac{(\sqrt{3}+\sqrt{2})^2}{\sqrt{3}+\sqrt{2}}=\sqrt{3}+\sqrt{2}\)
6.
\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{6-2\sqrt{10}}}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{6-2\sqrt{10}}}\)
1/ \(\frac{2}{3-\sqrt{7}}\sqrt{\frac{6\sqrt{2}-2\sqrt{14}}{3\sqrt{2}+\sqrt{14}}}\)
2/ \(\sqrt{6+2\sqrt{\sqrt{5}-\sqrt{13-\sqrt{48}}}}\)
3/ \(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
4/ \(\frac{24}{\sqrt{7}+1}+\frac{4}{3+\sqrt{7}}-\frac{3}{\sqrt{7}+2}\left(4-\sqrt{7}\right)\)
5/ \(\sqrt{7-3\sqrt{5}}\left(7+3\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{10}\right)\)
a)\(\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
b) \(\sqrt{7+4\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
c) \(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
d)\(\sqrt{7+2\sqrt{10}}-\sqrt{3-2\sqrt{2}}\)
a) \(=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1-\sqrt{5}-1=-2\)
b) \(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}=2+\sqrt{3}-1-\sqrt{3}=1\)
c) \(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}+1+\sqrt{7}-1=2\sqrt{7}\)
d) \(=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{5}+\sqrt{2}-\sqrt{2}+1=\sqrt{5}+1\)
\(\sqrt{2+\sqrt{2}.}\sqrt{3+\sqrt{7+\sqrt{2}.}}\sqrt{3+\sqrt{6+\sqrt{7+\sqrt{2}}.}}\sqrt{3-\sqrt{6+\sqrt{7+\sqrt{2}}}}\)