Mọi người giúp với ạaaa
Mọi người ơi giúp mình với, mình cần gấp lắm ạ
GTNN của x2 -3x-5
Mọi người ơi giúp mình với ạaaa
Ta có : |x - 2| ; |x - 5| ; |x - 18| ≥0∀x∈R≥0∀x∈R
=> |x - 2| + |x - 5| + |x - 18| ≥0∀x∈R≥0∀x∈R
=> D có giá trị nhỏ nhất khi x = 2;5;18
Mà x ko thể đồng thời nhận 3 giá trị
Nên GTNN của D là : 16 khi x = 5 ok nha bạn
x^2/x-1 = x^2-4x+4/x-1 + 4 = (x-2)^1/x-1 + 4 >= 4
Dấu "=" xảy ra <=> x-2 = 0 <=> x = 2 (tm)
Vậy GTNN của x^2/x-1 = 4 <=> x= 2
k mk nha
TL
\(\frac{11}{4}\)
Xin k
Nhớ k
HT
Mọi người giúp Bơ nhaee
Bơ sẽ trả ơn ạaaa
https://img.hoidap247.com/picture/question/20200214/large_1581654744101.png?v=0
1.\(cos\frac{4x}{3}=sin^2x\)
2.cos3x-cos2x+9sinx-4=0
mọi người ơi giải giúp em với !!!
cảm ơn mọi người nhiều ạaaa
1.
Đặt \(\frac{x}{3}=t\) pt trở thành:
\(cos4t=sin^23t\Leftrightarrow2cos4t=1-cos6t\)
\(\Leftrightarrow cos6t+2cos4t-1=0\)
\(\Leftrightarrow4cos^32t-3cos2t+2\left(2cos^22t-1\right)-1=0\)
\(\Leftrightarrow4cos^32t+2cos^22t-3cos2t-3=0\)
\(\Leftrightarrow\left(cos2t-1\right)\left(4cos^22t+6cos2t+3\right)=0\)
\(\Leftrightarrow cos2t=1\Leftrightarrow cos\frac{2x}{3}=1\)
\(\Leftrightarrow\frac{2x}{3}=k2\pi\Leftrightarrow x=k3\pi\)
2.
\(\Leftrightarrow4cos^3x-3cosx-\left(1-2sin^2x\right)+9sinx-4=0\)
\(\Leftrightarrow cosx\left(4cos^2x-3\right)+2sin^2x+9sinx-5=0\)
\(\Leftrightarrow cosx\left(4\left(1-sin^2x\right)-3\right)+\left(2sinx-1\right)\left(sinx+5\right)=0\)
\(\Leftrightarrow cosx\left(1-4sin^2x\right)+\left(2sinx-1\right)\left(sinx+5\right)=0\)
\(\Leftrightarrow\left(cosx+2sinx.cosx\right)\left(1-2sinx\right)-\left(1-2sinx\right)\left(sinx+5\right)=0\)
\(\Leftrightarrow\left(1-2sinx\right)\left(cosx-sinx+2sinx.cosx-5\right)=0\)
\(\Leftrightarrow\left(1-2sinx\right)\left(\sqrt{2}cos\left(x+\frac{\pi}{4}\right)+sin2x-5\right)=0\)
\(\Leftrightarrow1-2sinx=0\) (do \(\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\le\sqrt{2};sin2x\le1\) nên ngoặc sau luôn âm)
\(\Leftrightarrow sinx=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Mọi người giúp iem giải bài này với ạaaa
Hứa trả côngg\(\left[\left(-5\right)^{10}+2020\right]\left[2^3\left(-5\right)-4\left(-10\right)\right]\)
[(-5)^10+2020][2^3(-5)-4(-10)
=[(-5)^10+2020].0
=0
nhớ đấy
Chứng minh rằng nếu : \(\dfrac{x-y}{x+y}\) = \(\dfrac{z-x}{z+x}\) thì x2 = y.z
Mọi người giúp em với ạaaa
\(\dfrac{x-y}{x+y}=\dfrac{z-x}{z+x}\\ \Rightarrow\left(x-y\right)\left(z+x\right)=\left(x+y\right)\left(z-x\right)\\ \Rightarrow xz+x^2-yz-yx=xz-x^2+yz-yx\\ \Rightarrow xz-xz+x^2+x^2=yz+yz-yx+yx\\ \Rightarrow2x^2=2yz\\ \Rightarrow x^2=yz\)
a/\(cosx\left(2sinx+2\sqrt{3}cosx\right)=\sqrt{3}-2sin5x\)
b/\(sinx+\sqrt{3}cosx=4sin2xcosx\)
mọi người ơi giải giúp em với !!!
cảm ơn mọi người nhiều ạaaa
a/
\(\Leftrightarrow2sinx.cosx+2\sqrt{3}cos^2x=\sqrt{3}-2sin5x\)
\(\Leftrightarrow sin2x+\sqrt{3}\left(cos2x+1\right)=\sqrt{3}-2sin5x\)
\(\Leftrightarrow sin2x+\sqrt{3}cos2x=-2sin5x\)
\(\Leftrightarrow\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x=-sin5x\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{3}\right)=sin\left(-5x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=-5x+k2\pi\\2x+\frac{\pi}{3}=\pi+5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{21}+\frac{k2\pi}{7}\\x=-\frac{2\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)
b/
\(\Leftrightarrow sinx+\sqrt{3}cosx=2sin3x+2sinx\)
\(\Leftrightarrow sinx-\sqrt{3}cosx=-2sin3x\)
\(\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=-sin3x\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=sin\left(-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=-3x+k2\pi\\x-\frac{\pi}{3}=\pi+3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{2\pi}{3}+k\pi\end{matrix}\right.\)
Giúp mik với ạaaa
a.
$2\sqrt{3}-\sqrt{x^2+4}=0$
$\Leftrightarrow 2\sqrt{3}=\sqrt{x^2+4}$
$\Leftrightarrow 12=x^2+4$
$\Leftrightarrow 8=x^2$
$\Leftrightarrow x=\pm 2\sqrt{2}$
b. ĐKXĐ: $x\geq -1$
$\sqrt{16(x+1)}-\sqrt{9(x+1)}=1$
$\Leftrightarrow 4\sqrt{x+1}-3\sqrt{x+1}=1$
$\Leftrightarrow \sqrt{x+1}=1$
$\Leftrightarrow x+1=1$
$\Leftrightarrow x=0$ (tm)
c. ĐKXĐ: $x\geq 0$
$3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0$
$\Leftrightarrow 3\sqrt{2x}+10\sqrt{2x}-20-3\sqrt{2x}=0$
$\Leftrightarrow 10\sqrt{2x}-20=0$
$\Leftrightarrow \sqrt{2x}=2$
$\Leftrightarrow 2x=4$
$\Leftrightarrow x=2$ (tm)
d.
PT \(\Rightarrow \left\{\begin{matrix} x-1\geq 0\\ x^2-\sqrt{8x}+2=(x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x=\frac{1+\sqrt{2}}{2}\end{matrix}\right.\Leftrightarrow x=\frac{1+\sqrt{2}}{2}\)
e. ĐKXĐ: $x\leq 1$
PT $\Leftrightarrow \sqrt{1-x}+2\sqrt{1-x}-\frac{4}{3}\sqrt{1-x}+5=0$
$\Leftrightarrow \frac{5}{3}\sqrt{1-x}=-5< 0$ (vô lý)
Vậy pt vô nghiệm.
f. ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 2\sqrt{(\sqrt{x+1}+1)^2}-\sqrt{x+1}=4$
$\Leftrightarrow 2(\sqrt{x+1}+1)-\sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=2$
$\Leftrightarrow x=3$ (tm)
a) Ta có: \(2\sqrt{3}-\sqrt{x^2+4}=0\)
\(\Leftrightarrow\sqrt{x^2+4}=2\sqrt{3}\)
\(\Leftrightarrow x^2+4=12\)
\(\Leftrightarrow x^2=8\)
hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)
b) Ta có: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
\(\Leftrightarrow\sqrt{x+1}=1\)
\(\Leftrightarrow x+1=1\)
hay x=0
Giúp mik với ạaaa
Giúp e với ạaaa
Lời giải:
a. Để $f(x)=x^2-2mx+3m+4\geq 0$ với mọi $x\in\mathbb{R}$ thì:
\(\left\{\begin{matrix}
a=1>0\\
\Delta'=m^2-3m-4\leq 0\end{matrix}\right.\Leftrightarrow m^2-3m-4\leq 0\)
$\Leftrightarrow (m+1)(m-4)\leq 0$
$\Leftrightarrow -1\leq m\leq 4$
b.
Để pt có 2 nghiệm pb cùng dấu thì:
\(\left\{\begin{matrix}
\Delta'=m^2-3m-4>0\\
P=3m+4>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
(m+1)(m-4)> 0\\
m> \frac{-4}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
m> 4 \text{hoặc} m< -1\\
m> \frac{-4}{3}\end{matrix}\right.\)
$\Leftrightarrow m>4$ hoặc $\frac{-4}{3}< m < -1$
Lời giải:
a. Để $f(x)=x^2-2mx+3m+4\geq 0$ với mọi $x\in\mathbb{R}$ thì:
\(\left\{\begin{matrix}
a=1>0\\
\Delta'=m^2-3m-4\leq 0\end{matrix}\right.\Leftrightarrow m^2-3m-4\leq 0\)
$\Leftrightarrow (m+1)(m-4)\leq 0$
$\Leftrightarrow -1\leq m\leq 4$
b.
Để pt có 2 nghiệm pb cùng dấu thì:
\(\left\{\begin{matrix}
\Delta'=m^2-3m-4>0\\
P=3m+4>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
(m+1)(m-4)> 0\\
m> \frac{-4}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
m> 4 \text{hoặc} m< -1\\
m> \frac{-4}{3}\end{matrix}\right.\)
$\Leftrightarrow m>4$ hoặc $\frac{-4}{3}< m < -1$
giúp e với ạaaa
Gọi chữ số hàng chục là x và chữ số hàng đơn vị là y (x;y là các chữ số từ 0 đến 9)
Do chữ số hàng chục hơn chữ số hàng đơn vị là 4
\(\Rightarrow x-y=4\)
Giá trị chữ số ban đầu: \(10x+y\)
Giá trị chữ số sau khi đổi chỗ: \(10y+x\)
Do tổng số mới và số cũ là 132 nên ta có pt:
\(10x+y+10y+x=132\Rightarrow11\left(x+y\right)=132\Rightarrow x+y=12\)
Ta được hệ: \(\left\{{}\begin{matrix}x-y=4\\x+y=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
Vậy số đó là 84