cho x+y= -3 và x.y= -28
Tính giá trị của biểu thức x^4 + y^4
Cho x+y=5 va x.y=4 . Hãy tính giá trị của biểu thức A = x ^ 3 + y ^ 3
\(x+y=5\Rightarrow\left(x+y\right)^2=25\)
\(\Rightarrow x^2+2xy+y^2=25\)
\(\Rightarrow x^2+y^2=25-2xy=25-2.4=17\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=5.\left(17-4\right)=65\)
Tính giá trị biểu thức : M=x^3 - y^3 Biết x-y=4 và x.y=3
Ta có: \(x-y=4\Rightarrow\left(x-y\right)^2=16\)
\(\Rightarrow x^2-2xy+y^2=16\Rightarrow x^2+y^2=16+2xy=16+2.3=22\)
\(M=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=4.\left(22+3\right)=100\)
Cho x, y thỏa mãn x + y = 3 và x.y = - 4 Tính giá trị của biểu thức D = x3 - x 2 + x + y3 - y 2 + y +7
cho x+y=3 x.y=5 tính giá trị các biểu thức sau a) x^2+y^2. b) x^3+y^3 c) x^4+y^4
Đề sai rồi, không thể tồn tại x; y sao cho \(\left\{{}\begin{matrix}x+y=3\\xy=5\end{matrix}\right.\) được
Vì \(\left(x+y\right)^2\ge4xy;\forall x;y\) nên \(3^2>4.5\) là vô lý
a: \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2\cdot5=-1\)
b: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3\cdot3\cdot5=-18\)
cho x>y>0 và x-y=7; x.y=60
tính giá trị của biểu thức P=x4-y4
x - y = 7 => y = x - 7
=> x(x - 7) = 60
x2 - 7x + 12,25 = 72,25
(x - 3,5)2 = 72,25 mà x > 0 => x - 3,5 > -3,5
=> x - 3,5 = 8,5 => x = 12 => y = 60 : 12 = 5 => P = 124 - 54 = 20111
cảm ơn bạn! bạn có thể trả lời câu hỏi nữa mk vừa đăng lên ko
ta có:x.y=60 =>(xy)^2=60^=3600
(x-y)^2=x2-2xy+y^2=7^2
=>x^2+y^2=49+2*60=169
(x2-y2)2=x4-2*x2y2+y4=1692
=>x4-y4=1692+2*3600=21361
Cho x+y=5 và x.y=4 . Hãy tính giá trị của biểu thức A=x3+y3
\(A=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=5^3-3.5.4=65\)
Cho x - y = 4; x.y = 3. Giá trị của biểu thức (x + y)2 là:
toán tuổi thơ
\(x-y=4\Rightarrow\left(x-y\right)^2=16\Rightarrow x^2-2xy+y^2=16\Rightarrow x^2+y^2-2.3=16\Rightarrow x^2+y^2=22\)
\(\left(x+y\right)^2=x^2+y^2+2xy=22+2.3=28\)
cho x>y>0 và x-y=7 tính giá trị biểu thức x.y=60 . A= x^2-y^2 ; B=x^4-y^4
cho đơn thức a=(x.y^3).(-3/4.x^5.x^4).8/9.x^2.y^3). hãy thu gọn và tìm bậc của đơn thức A
Tính Giá Trị của A Khi x=-1 và y =1
\(A=\left(xy^3\right)\left(-\dfrac{3}{4}x^5x^4\right)\cdot\dfrac{8}{9}x^2y^3\)
\(=-\dfrac{2}{3}x^{12}y^6\)
Thay x = -1 và y = 1 vào biểu thức ta được :
\(A=-\dfrac{2}{3}\cdot\left(-1\right)^{12}.1^6=-\dfrac{2}{3}\)
Vậy : Tại x = -1 và y = 1 thì A có giá trị là \(\dfrac{2}{3}\)