Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Thị Diệu Thảo
Xem chi tiết
Đặng Ngọc Quỳnh
6 tháng 12 2020 lúc 16:18

Ta có: \(5x+2y⋮17\)

\(\Leftrightarrow5x+2y+17\left(x+y\right)⋮17\)

\(\Leftrightarrow22x+19y⋮17\)

\(\Leftrightarrow\left(22x+19y\right)-\left(5x+2y\right)6⋮17\)

\(\Leftrightarrow-8x+7y⋮17\)

\(\Leftrightarrow9x+7y⋮17\)( đpcm)

Khách vãng lai đã xóa
ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 11 2021 lúc 17:18

\(2,\\ PT\Leftrightarrow6x^2+9y^2-\left(x^2+y^2\right)=20412\\ \text{Mà }20412⋮3;6x^2+9y^2⋮3\\ \Leftrightarrow x^2+y^2⋮3\Leftrightarrow x^2⋮3;y^2⋮3\Leftrightarrow x⋮3;y⋮3\)

Đặt \(\left\{{}\begin{matrix}x=3a\\y=3b\end{matrix}\right.\left(a,b\in Z\right)\Leftrightarrow5\left(3a\right)^2+8\left(3b\right)^2=20412\)

\(\Leftrightarrow9\left(5a^2+8b^2\right)=20412\\ \Leftrightarrow5a^2+8b^2=2268\)

Mà \(2268⋮3\Leftrightarrow5a^2+8b^2⋮3\Leftrightarrow a^2⋮3;b^2⋮3\Leftrightarrow a⋮3;b⋮3\)

Đặt \(\left\{{}\begin{matrix}a=3c\\b=3d\end{matrix}\right.\left(c,d\in Z\right)\Leftrightarrow9\left(5c^2+8d^2\right)=2268\Leftrightarrow5c^2+8d^2=252\)

Mà \(252⋮3\Leftrightarrow5c^2+8d^2⋮3\Leftrightarrow c^2⋮3;d^2⋮3\Leftrightarrow c⋮3;d⋮3\)

Đặt \(\left\{{}\begin{matrix}c=3k\\d=3q\end{matrix}\right.\left(k,q\in Z\right)\Leftrightarrow9\left(5k^2+8q^2\right)=252\Leftrightarrow5k^2+8q^2=28\)

\(\Leftrightarrow5k^2=28-8q^2\ge0\Leftrightarrow q^2\le\dfrac{28}{8}=3,5\\ \text{Mà }q\in Z\\ \Leftrightarrow-3\le q^2\le3\Leftrightarrow-1\le q\le1\)

\(\forall q=0\Leftrightarrow k^2=\dfrac{28}{5}\left(ktm\right)\\ \forall q=\pm1\Leftrightarrow k=\pm2\\ \Leftrightarrow\left(c;d\right)=\left(6;3\right);\left(-6;-3\right);\left(-6;3\right);\left(6;-3\right)\\ \Leftrightarrow\left(a;b\right)=\left(18;9\right)\left(-18;-9\right);\left(-18;9\right);\left(18;-9\right)\\ \Leftrightarrow\left(x;y\right)=\left(54;27\right);\left(-54;-27\right);\left(54;-27\right);\left(-54;27\right)\)

httn
Xem chi tiết
Học Toán Kém
Xem chi tiết
Minh Triều
8 tháng 7 2015 lúc 14:16

a) 7A-2B= 7.(5x+2y)-2(9x+7y)

=35x+14y-18x-14y

=17x

b) ta có : 7A-2B=17x ( câu a)

mà 7A=7.(5x+2y) chia hết cho 17 (5x+2y chia hết cho 17)

=> 2B = 2(9x+7y) chia hết cho 17 

mà 2 không chia hết cho 17 nên 9x+7y chia hết cho 17 ( đpcm)

Hoàng văn tiến
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 23:35

a: 7A-2B

\(=7\cdot\left(5x+2y\right)-2\left(9x+7y\right)\)

\(=35x+14y-18x-14y=17x\)

b: \(7\left(5x+2y\right)+2\left(9x+7y\right)=17y⋮17\)

mà \(5x+2y⋮17\)

nên \(2\left(9x+7y\right)⋮17\)

=>\(9x+7y⋮17\)

onepiece
Xem chi tiết
Học Toán Kém
Xem chi tiết
Nguyễn Thị Huyền
Xem chi tiết
Thu Hà
10 tháng 9 2016 lúc 21:54

a, 7( 5x+ 2y ) - 2( 9x + 7y ) 

= 35x+ 14y - 18x - 14y

= 35x - 18x

= 17x

b, Ko bt lm ạ haha

Tsumi Akochi
10 tháng 9 2016 lúc 22:19

câu a có người trả lời rồi nên mik ko làm nữa!

b) Ta có: 9x+7y = 34x - 25x+17y-10y

                            =34x+17y+(-25x-10x)

                            =34x+17y-5(5x+2y)

vì 34 chia hết cho 17

    17 chia hết cho 17

  (5x+2y) chia hết cho 17

nên nếu x, y thuộc Z thoã mãn (5x+2y) chia hết cho 17 thì (9x-7y) chia hết cho 17.

  Cảm ơn đã theo dõi mik hihi   

Vũ Kỳ Nhã An
10 tháng 7 2022 lúc 21:25

ngu

ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 12 2021 lúc 21:26

a.

\(\Leftrightarrow8x^3+8x=8y^2\)

\(\Leftrightarrow x\left(x^2+1\right)=y^2\)

Gọi \(d=ƯC\left(x;x^2+1\right)\)

\(\Rightarrow x^2+1-x.x⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow x\) và \(x^2+1\) nguyên tố cùng nhau

\(\Rightarrow\left\{{}\begin{matrix}x=m^2\\x^2+1=n^2\end{matrix}\right.\)

\(x^2+1=n^2\Rightarrow\left(n-x\right)\left(n+x\right)=1\)

\(\Rightarrow x=0\)

\(\Rightarrow y=0\)

Nguyễn Việt Lâm
10 tháng 12 2021 lúc 21:26

TH1: a;b;c đồng dư khi chia 3 \(\Rightarrow a+b+c⋮3\)

TH2: 3 số a;b;c có số dư đôi một khác nhau khi chia cho 3 \(\Rightarrow a+b+c⋮3\)

TH3: 3 số a;b;c có 2 số đồng dư khi chia 3, một số khác số dư. Không mất tính tổng quát, giả sử \(a,b\) đồng dư khi chia 3 còn c khác số dư

\(\Rightarrow\left(a-b\right)^2⋮3\) còn \(\left(a-c\right)^2+\left(b-c\right)^2\) chia 3 luôn dư 1 hoặc 2

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2⋮̸3\)  (1)

Mặt khác từ giả thiết:

\(\left\{{}\begin{matrix}b^2-ac+3ac⋮3\\c^2-ab-3ab⋮3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b^2-ac⋮3\\c^2-ab⋮3\end{matrix}\right.\)

\(\Rightarrow2\left(a^2-bc\right)+2\left(b^2-ac\right)+2\left(c^2-ab\right)⋮3\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2⋮3\) trái với (1) ktm

Vậy \(a+b+c⋮3\)