Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hà Nhung
Xem chi tiết
QuocDat
14 tháng 12 2017 lúc 20:02

a) Thay f(-2) vào hàm số ta có :

y=f(-2)=(-2).(-2)+3=7

Thay f(-1) vào hàm số ta có :

y=f(-1)=(-2).(-1)+3=5

Thay f(0) vào hàm số ta có :

y=f(0)=(-2).0+3=1

Thay f(-1/2) vào hàm số ta có :

y=f(-1/2)=(-2).(-1/2)+3=4

Thay f(1/2) vào hàm số ta có :

y=f(1/2)=(-2).1/2+3=2

b) Thay g(-1) vào hàm số ta có :

y=g(-1)=(-1)2-1=0

Thay g(0) vào hàm số ta có :

y=g(0)=02-1=-1

Thay g(1) vào hàm số ta có :

y=g(1)=12-1=0

Thay g(2) vào hàm số ta có :

y=g(2)=22-1=3

Phạm Văn Thái
14 tháng 12 2017 lúc 19:46

y ;jfjnvyh;fjjfy f,.hgdbn<hgy>33<-66475>

Sky Hoàng Nguyễn Fuck
15 tháng 12 2017 lúc 17:38

a) Thay f(-2) vào hàm số ta có :
y=f(-2)=(-2).(-2)+3=7
Thay f(-1) vào hàm số ta có :
y=f(-1)=(-2).(-1)+3=5
Thay f(0) vào hàm số ta có :
y=f(0)=(-2).0+3=1
Thay f(-1/2) vào hàm số ta có :
y=f(-1/2)=(-2).(-1/2)+3=4
Thay f(1/2) vào hàm số ta có :
y=f(1/2)=(-2).1/2+3=2
b) Thay g(-1) vào hàm số ta có :
y=g(-1)=(-1)2
-1=0
Thay g(0) vào hàm số ta có :
y=g(0)=0
2
-1=-1
Thay g(1) vào hàm số ta có :
y=g(1)=1
2
-1=0
Thay g(2) vào hàm số ta có :
y=g(2)=2
2
-1=3

chúc bn hok tốt @_@

Nguyễn Lâm Nguyên
Xem chi tiết
makhanhviet
6 tháng 12 2021 lúc 16:43

      Giải:

Bài 1: lần lượt thay các giá trị của x, ta có:

_Y=f(-1)= -5.(-1)-1=4

_Y=f(0)= -5.0-1=1

_Y=f(1)= -5.1-1=-6

_Y=f(1/2)= -5.1/2-1=-7/2

 

Nguyễn Lê Phước Thịnh
6 tháng 12 2021 lúc 23:11

Bài 2: 

a: f(-2)=7

f(-1)=5

f(0)=3

Nhung Phan Hồng
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 18:12

a: f(-2)=4+3=7

f(-1)=2+3=5

f(0)=3

f(1/2)=-1+3=2

f(-1/2)=1+3=4

b: g(-1)=1-1=0

f(0)=0-1=-1

Không Back
Xem chi tiết
Tố Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 19:04

a: \(F\left(3\right)=3\left(3-2\right)=3\cdot1=3\)

\(\left[F\left(\dfrac{2}{3}\right)\right]^2=\left[\dfrac{2}{3}\cdot\left(\dfrac{2}{3}-2\right)\right]^2\)

\(=\left[\dfrac{2}{3}\cdot\dfrac{-4}{3}\right]^2=\left(-\dfrac{8}{9}\right)^2=\dfrac{64}{81}\)

\(G\left(-\dfrac{1}{2}\right)=-\left(-\dfrac{1}{2}\right)+6=6+\dfrac{1}{2}=\dfrac{13}{2}\)

b: F(x)=0

=>x(x-2)=0

=>\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c: F(a)=G(a)

=>\(a\left(a-2\right)=-a+6\)

=>\(a^2-2a+a-6=0\)

=>\(a^2-a-6=0\)

=>(a-3)(a+2)=0

=>\(\left[{}\begin{matrix}a-3=0\\a+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-2\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 5 2018 lúc 16:59

Đáp án là B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 1 2017 lúc 7:30

Đáp án B

Phương pháp: Lập bảng biến thiên của g(x) và đánh giá số giao điểm của đồ thị hàm số y = g(x) và trục hoành.

Cách giải: 

Xét giao điểm của đồ  thị  hàm sốy = f’(x) và đường thẳng y = -x ta thấy, hai đồ  thị  cắt nhau tại ba điểm có hoành độ là: -2;2;4 tương ứng với 3 điểm cực trị của y = g(x).

Bảng biến thiên:

Dựa vào bảng biến thiên ta thấy  => phương trình g(x) = 0 không có nghiệm

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:18

• Xét hàm số \(f\left( x \right) = 2x - \sin x\) có tập xác định \(D = \mathbb{R}\).

Vậy hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).

• Xét hàm số \(g\left( x \right) = \sqrt {x - 1} \)

ĐKXĐ: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) có tập xác định \(D = \left[ {1; + \infty } \right)\).

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) là hàm căn thức nên liên tục trên khoảng \(\left( {1; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1}  = \sqrt {1 - 1}  = 0 = g\left( 1 \right)\)

Do đó hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục tại điểm \({x_0} = 1\).

Vậy hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = f\left( x \right).g\left( x \right) = \left( {2x - \sin x} \right)\sqrt {x - 1} \)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = f\left( x \right).g\left( x \right)\) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{2x - \sin x}}{{\sqrt {x - 1} }}\)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục trên khoảng \(\left( {1; + \infty } \right)\).

Phương Anh
Xem chi tiết
I - Vy Nguyễn
19 tháng 2 2020 lúc 15:43

Ta có :+)\(f\left(x\right)=6-4x\)

\(\implies\)\(f\left(1\right)=6-4=2\)

Ta có :+) \(f\left(x\right)=6-4x=\frac{1}{2}\)

\(\implies\)   \(x=\frac{11}{8}\)

Ta có  :+) \(g\left(x\right)=2x^2-3x\)

\(\implies\) \(g\left(-2\right)=2.\left(-2\right)^2+3.2\)

\(\implies\) \(g\left(-2\right)=4.2+3.2\)

\(\implies\) \(g\left(-2\right)=14\)

  

Khách vãng lai đã xóa