A={x|x=n.(n-1),nϵN*}
Giúp mình với!!!!!!!
a)A={nϵN/n(n+1)≤15}
b)B={3k-1/kϵZ,-5≤k≤3}
c)C={xϵZ//x/<10}
d)D={xϵQ/x2-3x+1=0}
e)E={xϵZ/2x3-5x2+2x=0}
f)F={xϵN/x<20 và x chia hết cho 3}
\(a,A=\left\{0;1;2;3;4\right\}\\ b,B=\left\{-16;-13;-10;-7;-4;-1;2;5;8\right\}\\ c,C=\left\{-9;-8;-7;...;7;8;9\right\}\\ d,x^2-3x+1=0\\ \Delta=9-4=5\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3-\sqrt{5}}{2}\\x=\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\\ \Leftrightarrow D=\left\{\dfrac{3-\sqrt{5}}{2};\dfrac{3+\sqrt{5}}{2}\right\}\)
\(e,2x^3-5x^2+2x=0\\ \Leftrightarrow x\left(x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\dfrac{1}{2}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow E=\left\{0;2\right\}\\ f,F=\left\{0;3;6;9;12;15;18\right\}\)
CMR: a) A= \(^{10^n}\)+18n-1⋮27(nϵN)
b) \(^{n^3}\)-n⋮6(∀nϵN)
a) Qui nạp :
\(A=10^n+18n-1\)
+) Xét \(n=1\Leftrightarrow A=27⋮27\)
+) Xét \(n=2\Leftrightarrow A=135⋮27\)
Giả sử biểu thức đúng với \(n=k\)
Khi đó ta có : \(A=10^k+18k-1⋮27\)(*)
Để kết thúc bài toán ta cần chứng minh biểu thức đúng với \(n=k+1\)
Xét \(A=10^{k+1}+18\left(k+1\right)-1\)
\(A=10^k\cdot10+18k+18-1\)
\(A=10\left(10^k+18k-1\right)-162k+27\)
\(A=10\left(10^k+18k-1\right)-27\left(6k-1\right)\)
Theo (*) ta có \(10\left(10^k+18k-1\right)⋮27\)
Mặt khác \(-27\left(6k-1\right)⋮27\)
\(\Rightarrow A=10\left(10^k+18k-1\right)-27\left(6k-1\right)⋮27\)
Ta có đpcm
b) \(n^3-n=n\left(n-1\right)\left(n+1\right)\)
Ta có \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số tự nhiên liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)⋮2\\n\left(n-1\right)\left(n+1\right)⋮3\\\left(2;3\right)=1\end{matrix}\right.\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮2\cdot3=6\)( đpcm )
cho biểu thức A= (n+1) (n+2) (n+3) (n+4) (n+5) + 2 với nϵN . chứng minh rằng A ko là bình phương của bất kì số tự nhiên nào
ai trả lời đc t cho 200rb (robux) trog pls donet
Câu 4:Liệt kê các phần tử của tập hợp X = { nϵN | n=2k+1, k ϵ Z, 0 ≤ x ≤ 4 Ⓐ. {1;2;3;4 . } Ⓑ. {1;2;3;4;5 . } Ⓒ. {1;3;5;7;9 . } Ⓓ. ∅.
Lời giải:
$k\in\mathbb{Z}, 0\leq k\leq 4$ nên $k=0,1,2,3,4$
Đến đây, ta thay vô $n=2k+1$ thì $n=1,3,5,7,9$. Những số này chính là phần từ của tập hợp $X$
Vậy ta có thể viết tập $X$ như sau:
$X=\left\{1;3;5;7;9\right\}$
Đáp án C.
Chứng tỏ rằng: 1.3.5...(2n-1)/(n+1).(n+2).(n+3)...2n=1/2^n với nϵN*
CMR: \(\left(1+\dfrac{1}{m}\right)^m\)<\(\left(1+\dfrac{1}{n}\right)^n\) với m<n và m,nϵN*
Trong các mệnh đề sau mệnh đề nào sai?
A. ∀nϵN:\(n^2⋮2\Rightarrow n⋮2\)
B. ∀nϵN:\(n^2⋮6\Rightarrow n⋮6\)
C. ∀nϵN:\(n^2⋮3\Rightarrow n⋮3\)
D. ∀nϵN:\(n^2⋮9\Rightarrow n⋮9\)
Cho a=6n+5 và b=2n+1 (nϵN), chứng tỏ a và b là số nguyên tố cùng nhau với mọi n
Gọi nên ta có :
và
và
và
Mà là các số lẻ nên không thể có ước là 2
và là nguyên tố cùng nhau
giúp mình với chứng minh :với n thuộc N;n>=2 ta có:(x^n-1)=(x-1)(x^n-1+x^n-2+...+x^2+x+1)
Giúp mình với!
Câu 1: CMR với mọi a,b thuộc Z :
a, \(a^3b-ab^3\) chia hết cho 6 b,\(a^5b-ab^5\) chia hết cho 30
Câu 2: CMR tồn tại 1 bội của 203 có dạng: 200420042004....20042004
Câu 3: Tìm n thuộc N sao cho \(x^{2n}+x^n+1\) chia hết cho \(x^2+x+1\)
Câu 4: CMR với mọi n thuộc N \(\left(x^n-1\right)\left(x^{n+1}-1\right)\) chia hết cho \(\left(x+1\right)\left(x-1\right)^2\)
Giúp mình với khó quá! Ai làm hộ mình mình like tất! Làm mấy câu cũng đc! khoảng 2h 50 mình lấy nha mấy bạn thân ui!
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha