Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị hồng hạnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 3 2021 lúc 22:26

a) Xét tứ giác AKHP có 

\(\widehat{PAK}=90^0\)(ΔABC vuông tại A)

\(\widehat{AKH}=90^0\left(HK\perp AB\right)\)

\(\widehat{APH}=90^0\left(HP\perp AC\right)\)

Do đó: AKHP là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

ngô trần liên khương
Xem chi tiết
Phạm Quang Minh
9 tháng 5 2021 lúc 18:04

mình chịu thoiii

Khách vãng lai đã xóa
sonvantran
12 tháng 7 lúc 22:09

Gì nhiều vậy???

 

Phạm Ngọc Phong
22 tháng 8 lúc 0:12

khôn vừa th , 1 câu hỏi đáp cho đc bao nhiêu điểm mà đòi phải làm tận 10 bài ,khôn như m thì dell ai muốn làm

Huỳnh Trâm
Xem chi tiết
Vô Danh
26 tháng 5 2021 lúc 20:20

a, Xét tam giác AHB và tam giác BCD ta có : 

^AHB = ^BCD = 900

^BDC = ^ABH ( so le trong )

Vậy tam giác AHB ~ tam giác BCD ( c.g.c )

b, Xét tam giác ADB và tam giác HAD 

^A = ^H = 900

^D _ chung 

Vậy tam giác ADB ~ tam giác HAD ( g.g )

⇒ADAH=BDAD⇒ADAH=BDAD( tỉ số đồng dạng ) ⇒AD2=BD.DH

c) -Ta có: AD2= DH.DB(cmt)

=> DH= AD2:DB

     DH=3^2:5=9:5=1,8

    - Xét tam giác BDC vuông tại C có:

      DB^2 = BC^2+CD^2

      DB^2=3^2+4^2=25

=> BD=5cm

Ta có: tam giác AHB ~ tam giác BCD(CM câu a)

=> AH/BC=AB/BD

=> AH=AB.BC:BD

<=> AH=3.4:5=2,4cm

d) Ta có diện tích tam giác AHB= 1/2 AB.AH=1/2x2,4x4=4.8

     Ta có diện tích tam giác BCD= 1/2 BC.DC=1/2x3x4=6

S ABH/ S BCD= 4,8/6=4/5

lethihongcho
Xem chi tiết
Hikari
11 tháng 2 2015 lúc 14:20

diện tích hình tam giác ABD là:

3 x 4 = 2 = 6 (cm2)

diện tích hình thang ABCD là:

(5 + 4) x 3 : 2 = 13,5 (cm2)

diện tích hình tam giác BDC là:

13,5 - 6 = 7,5 (cm2)

tỉ số phần trăm của diện tích hai hình tam giác ABD và diện tích hình tam giác BDC là:

6 : 7,5 = 0,8 = 80%

đáp số: a)13,5.

            b)80%.

Hikari
11 tháng 2 2015 lúc 14:21

Bài này có trong sách giáo khoa lớp 5 đúng ko???!!!

Thắng Max Level
15 tháng 2 2017 lúc 12:55

a.13,5cm2

b.80%

CHÚC BẠN HỌC GIỎI

anh
Xem chi tiết
Uyên trần
13 tháng 3 2021 lúc 21:57

a) Xét ΔHBAΔHBA và ΔABCΔABC có:

ˆAHB=ˆCAB=90∘AHB^=CAB^=90∘

ˆBB^ là góc chung

⇒ΔHBA∼ΔABC⇒ΔHBA∼ΔABC (g-g)

c) ΔABCΔABC có ADAD là đường phân giác, theo tính chất đường phân giác ta có:

SΔABD=12⋅AH⋅BDSΔABD=12·AH·BD

⇒SΔABDSΔACD=BDDC=34⇒SΔABDSΔACD=BDDC=34

image 
Uyên trần
13 tháng 3 2021 lúc 22:34

c, định lí Py-ta-go trong tam giác vg ABC (vg tại A)

BC^2= AB^2 +AC^2

BC=20 cm 

Có HBA~ABC(cmt)

BH/AB=BA/BC

AB^2=BH*BC

BH=7,2 cm

CH=BC-BH=12,8 cm

xét ABH và CAH

ABH ~ CAH (g-g)

AH/CH=BH/AH

AH^2=BH*CH=7,2*12,8=92,16cm

AH=9,6 cm 

ta có AD là tia pg 

DB/AB=DC/AC=DB+DC/AB+AC=BC/AB+AC=5/7

DC=5/7*16= 11,4 cm 

HD=HC-DC=1,4 cm

SAHD= AH*HD= 9,6*1,4=13,44 cm^2

Ngô Phương Nam
Xem chi tiết
Lương Đại
29 tháng 3 2022 lúc 21:58

a, Ta có : \(DC=2AB=2.6=12\left(cm\right)\)

\(\Rightarrow S_{ABCD}=\dfrac{\left(AB+CD\right).AH}{2}=\dfrac{\left(6+12\right).4}{2}=36\left(cm^2\right)\)

b, Xét ΔAHD và ΔBKC có :

\(\widehat{AHD}=\widehat{BKC}=90^0\)

\(\widehat{D}=\widehat{C}\left(ABCD\cdot là\cdot hình\cdot thang\cdot cân\right)\)

\(\Rightarrow\Delta AHD\sim\Delta BKC\left(g-g\right)\)

c, Ta có : \(\Delta AHD\sim\Delta BKC\left(cmt\right)\)

\(\Rightarrow\dfrac{AH}{BK}=\dfrac{AD}{BC}\)

\(\Rightarrow AH.BC=AD.BK\left(đpcm\right)\)

Ngô Phương Nam
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2023 lúc 22:53

a: DC=6*2=12cm

S ABCD=1/2(AB+CD)*AH

=1/2*4*(6+12)=2*18=36cm2

b: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có

góc D=góc C

=>ΔAHD đồng dạng với ΔBKC

c: ΔAHD đồng dạng với ΔBKC

=>AD/BC=AH/BK

=>AH*BC=AD*BK

Nguyễn Đoan Hạnh Vân
Xem chi tiết
KUDO SHINICHI
13 tháng 8 2016 lúc 11:47

GIẢI: 
a) Chứng minh tam giác CKH đồng dạng tam giác BCA 
AKC^ + ABC^ = 2v => AKCH nội tiếp 
=> CHK^ = CAB^ (1) ( cùng chắn cung CK) 
CKH^ = CAH^ (2) ( cùng chắn cung CH) 
CAH^ = ABC^ (3) ( so le trong) 
(2) và (3) => CKH^ = ACB^ (4) 
(1) và (4) => ΔCKH ~ ΔBCA (g.g) 

b) Chứng minh HK=AC.sinBAD 
ΔCKH ~ ΔBCA =>HK/AC = CH/AB = CH/CD = sin(CDH^) = sin(BAD^) ( đồng vị) 
=> HK = AC.sin(BAD^) 

c) Tính diện tích tứ giác AKCH nếu góc BAD = 60 độ, AB=4cm, AD=5cm 
AB = CD = 4 
CDH^ = BAD^ = 60* 
=> CH = 4√3/2 = 2√3 ( đường cao tam giác đều cạnh = 4) 
DH = CD/2 = 4/2 = 2 
=> AH = AD + DH = 5 + 2 = 7 
AD = BC = 5 
CBK^ = BAD^ = 60* 
=> CK = 5.√3/2 
BK = BC/2 = 5/2 
=> AK = AB + BK = 4 + 5/2 = 13/2 
S(AKCH) = S(ACK) + S(ACH) = AK.CK/2 + AH.CH/2 
= (13/2).( 5.√3/2)/2 + 7.(2√3)/2 = 732√3/8 

chúc bạn học tốt

Bé Heo
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2021 lúc 21:50

a) Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{HAB}\right)\)

Do đó: ΔHBA\(\sim\)ΔHAC(g-g)

hung Le nguyen
Xem chi tiết