4xy-x=y=5
11 x (y+3) = 5 x y +105
11 x (y-6) = (4xy)+11
11.(y+3)=5.y+105
=>11.y+3=5.y+105
=>(11.y).(5.y)=105-3
=>(11.5)y=102
55y=102
y=102/55
b) 11.(y-6)=(4.y)+11
=>11y-6=4y+11
=>44y=11+6
44y=17
y=17/44
Tìm x,y thỏa mãn x^2 +5y^2 -4x -4xy +6y +5 = 0. Tính P=(x-3)^2023 + (y-2)^2023 +(x+y-5)^2023
Ta có:
\(x^2+5y^2-4x-4xy+6y+5=0\\\Rightarrow[(x^2-4xy+4y^2)-(4x-8y)+4]+(y^2-2y+1)=0\\\Rightarrow[(x-2y)^2-4(x-2y)+4]+(y-1)^2=0\\\Rightarrow(x-2y-2)^2+(y-1)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-2y-2\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Mà: \(\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)
nên: \(\left\{{}\begin{matrix}x-2y-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2y+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot1+2=4\\y=1\end{matrix}\right.\)
Thay \(x=4;y=1\) vào \(P\), ta được:
\(P=\left(4-3\right)^{2023}+\left(1-2\right)^{2023}+\left(4+1-5\right)^{2023}\)
\(=1^{2023}+\left(-1\right)^{2023}+0^{2023}\)
\(=1-1=0\)
Vậy \(P=0\) khi \(x=4;y=1\).
Cho x+y=5 tính giá trị của biểu thức
A=x^3+y^3-2x^2-2y^2+3xy(x+y)-4xy+3(x+y)+10
Chox-y=7 Tính
B=x(x+2)+y(y-2)-2xy+37
Cho x+2y=5 Tính
C=x^2+4y^2-2x+10+4xy-4y
Câu 2:
\(B=x^2+2x+y^2-2x-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2\cdot7+37=49+37+14=100\)
Câu 3:
\(C=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2\cdot5+10=25\)
b, Cho x + y = 5.Tính GTBT: N=x3+y3–2x2–2y2+3xy(x+y)–4xy+3(x+y)+10
\(x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10=\left[x^3+y^3+3xy\left(x+y\right)\right]-2\left(x^2+2xy+y^2\right)+3\left(x+y\right)+10=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10=5^3-2.5^2+3.5+10=100\)
Giải hệ phương trình:
xy(4xy+y+4)=y^2(2y+5)−1
2xy(x−2y)+x−14y=0
giải hệ phương trình:
xy(4xy+y+4)=y^2(2y+5)−1
2xy(x−2y)+x−14y=0
Tìm x, y, z biết
a) \(\text{x}^{\text{2}}+5\text{y}^{\text{2}}-4xy+6y+9=0\)b) \(2\text{x}^{\text{2}}+4\text{y}^{\text{2}}+\text{z}^{\text{2}}-4xy+4\text{y}^{\text{2}}-2x-2z+5=0 \)
b) \(2x^2+4y^2+z^2-4xy-2x-2z+5=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-2x+1\right)+\left(z^2-2z+1\right)+3=0\)
....
tìm x,y,z biết
a) \(\text{x}^{\text{2}}+5\text{y}^{\text{2}}-4xy+6y+9=0 \)
b) \(2\text{x}^{\text{2}}+4\text{y}^{\text{2}}+\text{z}^{\text{2}}-4xy+4\text{y}^{\text{2}}-2x+2z+5=0\)
a) \(x^2+5y^2-4xy+6y+9=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y=2.\left(-3\right)=-6\\y=-3\end{matrix}\right.\)
Vậy : \(\left(x,y\right)=\left(-6,-3\right)\)
tính giá trị của A=x(2x+1)-4xy+y(2y-1)+2000 biết x-y=5
\(A=x\left(2x+1\right)-4xy+y\left(2y-1\right)+2000.\)
\(2x^2+x-4xy+2y^2-y+2000\)
\(2\left(x-y\right)^2+x-y+2000=2.25+5+2000\)