Tính \(B=sin\dfrac{7\pi}{6}+cos9\pi+tan\left(\dfrac{-5\pi}{4}\right)+cot\dfrac{7\pi}{2}\)
Tính giá trị biểu thức:
\(P=\left[Tan\dfrac{17\Pi}{4}+Tan\left(\dfrac{7\Pi}{2}-x\right)\right]^2+\left[Cot\dfrac{13\Pi}{4}+Cot\left(7\Pi-x\right)\right]^2\)
\(P=\left[tan\dfrac{17\pi}{4}+tan\left(\dfrac{7\pi}{2}-x\right)\right]^2+\left[cot\dfrac{13\pi}{4}+cot\left(7\pi-x\right)\right]^2\)
\(=\left[tan\dfrac{\pi}{4}+tan\left(-\dfrac{\pi}{2}-x\right)\right]^2+\left[cot\left(-\dfrac{3\pi}{4}\right)+cot\left(-\pi-x\right)\right]^2\)
\(=\left[tan\dfrac{\pi}{4}-cotx\right]^2+\left[tan\dfrac{\pi}{4}-cotx\right]^2\)
\(=2\left(1-cotx\right)^2\)
giải phương trình
a) \(sinx=sin\dfrac{\pi}{4}\)
b) \(cos2x=cosx\)
c) \(tan\left(x-\dfrac{\pi}{3}\right)=\sqrt{3}\)
d) \(cot\left(2x+\dfrac{\pi}{6}\right)=cot\dfrac{\pi}{4}\)
a: \(sinx=sin\left(\dfrac{\Omega}{4}\right)\)
=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{4}+k2\Omega\\x=\Omega-\dfrac{\Omega}{4}+k2\Omega=\dfrac{3}{4}\Omega+k2\Omega\end{matrix}\right.\)
b: cos2x=cosx
=>\(\left[{}\begin{matrix}2x=x+k2\Omega\\2x=-x+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k2\Omega\\3x=k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=k2\Omega\\x=\dfrac{k2\Omega}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{k2\Omega}{3}\)
c:
ĐKXĐ: \(x-\dfrac{\Omega}{3}< >\dfrac{\Omega}{2}+k\Omega\)
=>\(x< >\dfrac{5}{6}\Omega+k\Omega\)
\(tan\left(x-\dfrac{\Omega}{3}\right)=\sqrt{3}\)
=>\(x-\dfrac{\Omega}{3}=\dfrac{\Omega}{3}+k\Omega\)
=>\(x=\dfrac{2}{3}\Omega+k\Omega\)
d:
ĐKXĐ: \(2x+\dfrac{\Omega}{6}< >k\Omega\)
=>\(2x< >-\dfrac{\Omega}{6}+k\Omega\)
=>\(x< >-\dfrac{1}{12}\Omega+\dfrac{k\Omega}{2}\)
\(cot\left(2x+\dfrac{\Omega}{6}\right)=cot\left(\dfrac{\Omega}{4}\right)\)
=>\(2x+\dfrac{\Omega}{6}=\dfrac{\Omega}{4}+k\Omega\)
=>\(2x=\dfrac{1}{12}\Omega+k\Omega\)
=>\(x=\dfrac{1}{24}\Omega+\dfrac{k\Omega}{2}\)
chứng minh đẳng thức lượng giác
a) 2.\(cot\left(\dfrac{\pi}{2}-x\right)\)+ tan\(\left(\pi-x\right)\)= tan\(x\)
b) sin\(\left(\dfrac{5\pi}{2}-x\right)\)+ cos \(\left(13\pi+x\right)\) - sin\(\left(x-5\pi\right)\) = sin\(x\)
a: \(2\cdot cot\left(\dfrac{pi}{2}-x\right)+tan\left(pi-x\right)\)
\(=2\cdot tanx-tanx\)
=tan x
b: \(sin\left(\dfrac{5}{2}pi-x\right)+cos\left(13pi+x\right)-sin\left(x-5pi\right)\)
\(=sin\left(\dfrac{pi}{2}-x\right)+cos\left(pi+x\right)+sin\left(pi-x\right)\)
\(=cosx-cosx+sinx=sinx\)
chứng minh đẳng thức lượng giác
a) 2.cot\(\left(\dfrac{\pi}{2}-x\right)\)+ tan\(\left(\pi-x\right)\) = tan\(x\)
b) \(sin\left(\dfrac{5\pi}{2}-x\right)\)+ cos\(\left(13\pi+x\right)\) - sin\(\left(x-5\pi\right)\) = sin\(x\)
\(a,VT=2.tanx+tan\left(-x\right)\\ =2tanx-tanx=tanx\)
\(b,VT=sin\left(2\pi+\dfrac{\pi}{2}-x\right)+cos\left(12\pi+\pi+x\right)-sin\left(x-4\pi-\pi\right)\\ =sin\left(\dfrac{\pi}{2}-x\right)+cos\left(\pi+x\right)+sin\left(\pi-x\right)\\ =cosx-cosx+sinx\\ =sinx=VP\)
Cho cot\(\dfrac{\Pi}{14}\) = a. Tính K theo a:
K = sin\(\dfrac{2\Pi}{7}\) + sin\(\dfrac{4\Pi}{7}\) + sin\(\dfrac{6\Pi}{7}\)
Đơn giản các biểu thức sau:
G = \(cos\left(\alpha-5\pi\right)+sin\left(-\dfrac{3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)
H = \(cot\left(\alpha-2\pi\right).cos\left(\alpha-\dfrac{3\pi}{2}\right)+cos\left(\alpha-6\pi\right)-2sin\left(\alpha-\pi\right)\)
bài 1) ta có : \(G=cos\left(\alpha-5\pi\right)+sin\left(\dfrac{-3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)
\(G=cos\left(\alpha-\pi\right)+sin\left(\dfrac{\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{\pi}{2}-\alpha\right)\)
\(G=cos\left(\pi-\alpha\right)+sin\left(\dfrac{\pi}{2}-\left(-\alpha\right)\right)-tan\left(\pi+\alpha-\dfrac{\pi}{2}\right).cot\left(\dfrac{\pi}{2}-\alpha\right)\) \(G=cos\left(\alpha\right)+cos\left(\alpha\right)+tan\left(\dfrac{\pi}{2}-\alpha\right).cot\left(\dfrac{\pi}{2}-\alpha\right)=2cos\alpha+1\) bài 2) ta có : \(H=cot\left(\alpha\right).cos\left(\alpha+\dfrac{\pi}{2}\right)+cos\left(\alpha\right)-2sin\left(\alpha-\pi\right)\) \(H=cot\left(\alpha\right).cos\left(\dfrac{\pi}{2}-\left(-\alpha\right)\right)+cos\left(\alpha\right)+2sin\left(\pi-\alpha\right)\) \(H=-cot\left(\alpha\right).sin\left(\alpha\right)+cos\left(\alpha\right)+2sin\left(\alpha\right)\) \(H=-cos\alpha+cos\alpha+2sin\alpha=2sin\alpha\)
chứng minh đẳng thức lượng giác
a) \(\dfrac{1-cos^2\left(\dfrac{\pi}{2}-x\right)}{1-sin^2\left(\dfrac{\pi}{2}-x\right)}\) - cot\(\left(\dfrac{\pi}{2}-x\right)\) . tan\(\left(\dfrac{\pi}{2}-x\right)\) = \(\dfrac{1}{sin^2x}\)
b) \(\left(\dfrac{1}{cos2x}+1\right)\).tan\(x\) = \(tan2x\)
Để chứng minh các định lượng đẳng cấp, ta sẽ sử dụng các công thức định lượng giác cơ bản và các quy tắc biến đổi đẳng thức. a) Bắt đầu với phương trình ban đầu: 1 - cos^2(π/2 - x) / (1 - sin^2(π/2 - x)) = -cot(π/2 - x) * tan( π/2 - x) Ta biết rằng: cos^2(π/2 - x) = sin^2(x) (công thức lượng giác) sin^2(π/2 - x) = cos^2(x) (công thức lượng giác) Thay vào phương trình ban đầu, ta có: 1 - sin^2(x) / (1 - cos^2(x)) = -cot(π/2 - x) * tan(π/ 2 - x) Tiếp theo, ta sẽ tính toán một số lượng giác: cot(π/2 - x) = cos(π/2 - x) / sin(π/2 - x) = sin(x) / cos(x) = tan(x) (công thức lượng giác) tan(π/2 - x) = sin(π/2 - x) / cos(π/2 - x) = cos(x) / sin(x) = 1 / tan(x) (công thức lượng giác) Thay vào phương trình, ta có: 1 - sin^2(x) / (1 - cos^2(x)) = -tan(x) * (1/tan(x)) = -1 Vì vậy, ta đã chứng minh là đúng. b) Bắt đầu với phương thức ban đầu: (1/cos^2(x) + 1) * tan(x) = tan^2(x) Tiếp tục chuyển đổi phép tính: 1/cos^2(x) + 1 = tan^2(x) / tan(x) = tan(x) Tiếp theo, ta sẽ tính toán một số giá trị lượng giác: 1/cos^2(x) = sec^2(x) (công thức) lượng giác) sec^2(x) + 1 = tan^2(x) + 1 = sin^2(x)/cos^2(x) + 1 = (sin^2(x) + cos^2(x) ))/cos^2(x) = 1/cos^2(x) Thay thế vào phương trình ban đầu, ta có: 1/cos^2(x) + 1 = 1/cos^2(x) Do đó, ta đã chứng minh được b)đúng.
Tính giá trị của biểu thức sau : B= \(\dfrac{tan\left(\dfrac{21\pi}{2}-x\right).cos\left(38\pi-x\right).sin\left(x-7\pi\right)}{sin\left(\dfrac{13\pi}{2}-x\right).cos\left(x-2023\pi\right)}\)
chứng minh đẳng thức lượng giác
a) \(\dfrac{1-cos^2\left(\dfrac{\pi}{2}-x\right)}{1-sin^2\left(\dfrac{\pi}{2}-x\right)}\)- cot\(\left(\dfrac{\pi}{2}-x\right)\).tan\(\left(\dfrac{\pi}{2}-x\right)\)= \(\dfrac{1}{sin^2x}\)
b) \(\left(\dfrac{1}{cos2x}+1\right)\).tan\(x\) = tan\(2x\)
a) Để chứng minh đẳng thức: 1 - cos^2(π/2 - x) / (1 - sin^2(π/2 - x)) = -cot(π/2 - x) * tan(π/2 - x) ta sẽ chứng minh cả hai phía bằng nhau. Bên trái: 1 - cos^2(π/2 - x) / (1 - sin^2(π/2 - x)) = sin^2(π/2 - x) / (1 - sin^2(π/2 - x)) = sin^2(π/2 - x) / cos^2(π/2 - x) = (sin(π/2 - x) / cos(π/2 - x))^2 = (cos(x) / sin(x))^2 = cot^2(x) Bên phải: -cot(π/2 - x) * tan(π/2 - x) = -cot(π/2 - x) * (1 / tan(π/2 - x)) = -cot(π/2 - x) * (cos(π/2 - x) / sin(π/2 - x)) = -(cos(x) / sin(x)) * (sin(x) / cos(x)) = -1 Vậy, cả hai phía bằng nhau và đẳng thức được chứng minh. b) Để chứng minh đẳng thức: (1 + cos^2(x)) * (1 + cot^2(x)) * tan(x) = tan^2(x) ta sẽ chứng minh cả hai phía bằng nhau. Bên trái: (1 + cos^2(x)) * (1 + cot^2(x)) * tan(x) = (1 + cos^2(x)) * (1 + (cos(x) / sin(x))^2) * (sin(x) / cos(x)) = (1 + cos^2(x)) * (1 + cos^2(x) / sin^2(x)) * (sin(x) / cos(x)) = (1 + cos^2(x)) * (sin^2(x) + cos^2(x)) / sin^2(x) * (sin(x) / cos(x)) = (1 + cos^2(x)) * 1 / sin^2(x) * (sin(x) / cos(x)) = (1 + cos^2(x)) / sin^2(x) * (sin(x) / cos(x)) = (cos^2(x) + sin^2(x)) / sin^2(x) * (sin(x) / cos(x)) = 1 / sin^2(x) * (sin(x) / cos(x)) = tan^2(x) Bên phải: tan^2(x) Vậy, cả hai phía bằng nhau và đẳng thức được chứng minh.