Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Anh
Xem chi tiết
Hồng Phúc
15 tháng 4 2021 lúc 8:42

\(P=\left[tan\dfrac{17\pi}{4}+tan\left(\dfrac{7\pi}{2}-x\right)\right]^2+\left[cot\dfrac{13\pi}{4}+cot\left(7\pi-x\right)\right]^2\)

\(=\left[tan\dfrac{\pi}{4}+tan\left(-\dfrac{\pi}{2}-x\right)\right]^2+\left[cot\left(-\dfrac{3\pi}{4}\right)+cot\left(-\pi-x\right)\right]^2\)

\(=\left[tan\dfrac{\pi}{4}-cotx\right]^2+\left[tan\dfrac{\pi}{4}-cotx\right]^2\)

\(=2\left(1-cotx\right)^2\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2023 lúc 19:20

a: \(sinx=sin\left(\dfrac{\Omega}{4}\right)\)

=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{4}+k2\Omega\\x=\Omega-\dfrac{\Omega}{4}+k2\Omega=\dfrac{3}{4}\Omega+k2\Omega\end{matrix}\right.\)

b: cos2x=cosx

=>\(\left[{}\begin{matrix}2x=x+k2\Omega\\2x=-x+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k2\Omega\\3x=k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=k2\Omega\\x=\dfrac{k2\Omega}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{k2\Omega}{3}\)

c:

ĐKXĐ: \(x-\dfrac{\Omega}{3}< >\dfrac{\Omega}{2}+k\Omega\)

=>\(x< >\dfrac{5}{6}\Omega+k\Omega\)

 \(tan\left(x-\dfrac{\Omega}{3}\right)=\sqrt{3}\)

=>\(x-\dfrac{\Omega}{3}=\dfrac{\Omega}{3}+k\Omega\)

=>\(x=\dfrac{2}{3}\Omega+k\Omega\)

d:

ĐKXĐ: \(2x+\dfrac{\Omega}{6}< >k\Omega\)

=>\(2x< >-\dfrac{\Omega}{6}+k\Omega\)

=>\(x< >-\dfrac{1}{12}\Omega+\dfrac{k\Omega}{2}\)

 \(cot\left(2x+\dfrac{\Omega}{6}\right)=cot\left(\dfrac{\Omega}{4}\right)\)

=>\(2x+\dfrac{\Omega}{6}=\dfrac{\Omega}{4}+k\Omega\)

=>\(2x=\dfrac{1}{12}\Omega+k\Omega\)

=>\(x=\dfrac{1}{24}\Omega+\dfrac{k\Omega}{2}\)

myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 19:47

a: \(2\cdot cot\left(\dfrac{pi}{2}-x\right)+tan\left(pi-x\right)\)

\(=2\cdot tanx-tanx\)

=tan x

b: \(sin\left(\dfrac{5}{2}pi-x\right)+cos\left(13pi+x\right)-sin\left(x-5pi\right)\)

\(=sin\left(\dfrac{pi}{2}-x\right)+cos\left(pi+x\right)+sin\left(pi-x\right)\)

\(=cosx-cosx+sinx=sinx\)

myyyy
Xem chi tiết
Hquynh
18 tháng 8 2023 lúc 19:28

\(a,VT=2.tanx+tan\left(-x\right)\\ =2tanx-tanx=tanx\)

\(b,VT=sin\left(2\pi+\dfrac{\pi}{2}-x\right)+cos\left(12\pi+\pi+x\right)-sin\left(x-4\pi-\pi\right)\\ =sin\left(\dfrac{\pi}{2}-x\right)+cos\left(\pi+x\right)+sin\left(\pi-x\right)\\ =cosx-cosx+sinx\\ =sinx=VP\)

☯๖ۣۜHải☬Ⓢky™
Xem chi tiết
Tam Hai
20 tháng 10 lúc 18:59

Yes

Le van a
Xem chi tiết
Mysterious Person
25 tháng 7 2018 lúc 15:04

bài 1) ta có : \(G=cos\left(\alpha-5\pi\right)+sin\left(\dfrac{-3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)

\(G=cos\left(\alpha-\pi\right)+sin\left(\dfrac{\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{\pi}{2}-\alpha\right)\)

\(G=cos\left(\pi-\alpha\right)+sin\left(\dfrac{\pi}{2}-\left(-\alpha\right)\right)-tan\left(\pi+\alpha-\dfrac{\pi}{2}\right).cot\left(\dfrac{\pi}{2}-\alpha\right)\) \(G=cos\left(\alpha\right)+cos\left(\alpha\right)+tan\left(\dfrac{\pi}{2}-\alpha\right).cot\left(\dfrac{\pi}{2}-\alpha\right)=2cos\alpha+1\) bài 2) ta có : \(H=cot\left(\alpha\right).cos\left(\alpha+\dfrac{\pi}{2}\right)+cos\left(\alpha\right)-2sin\left(\alpha-\pi\right)\) \(H=cot\left(\alpha\right).cos\left(\dfrac{\pi}{2}-\left(-\alpha\right)\right)+cos\left(\alpha\right)+2sin\left(\pi-\alpha\right)\) \(H=-cot\left(\alpha\right).sin\left(\alpha\right)+cos\left(\alpha\right)+2sin\left(\alpha\right)\) \(H=-cos\alpha+cos\alpha+2sin\alpha=2sin\alpha\)

títtt
Xem chi tiết
meme
19 tháng 8 2023 lúc 20:10

Để chứng minh các định lượng đẳng cấp, ta sẽ sử dụng các công thức định lượng giác cơ bản và các quy tắc biến đổi đẳng thức. a) Bắt đầu với phương trình ban đầu: 1 - cos^2(π/2 - x) / (1 - sin^2(π/2 - x)) = -cot(π/2 - x) * tan( π/2 - x) Ta biết rằng: cos^2(π/2 - x) = sin^2(x) (công thức lượng giác) sin^2(π/2 - x) = cos^2(x) (công thức lượng giác) Thay vào phương trình ban đầu, ta có: 1 - sin^2(x) / (1 - cos^2(x)) = -cot(π/2 - x) * tan(π/ 2 - x) Tiếp theo, ta sẽ tính toán một số lượng giác: cot(π/2 - x) = cos(π/2 - x) / sin(π/2 - x) = sin(x) / cos(x) = tan(x) (công thức lượng giác) tan(π/2 - x) = sin(π/2 - x) / cos(π/2 - x) = cos(x) / sin(x) = 1 / tan(x) (công thức lượng giác) Thay vào phương trình, ta có: 1 - sin^2(x) / (1 - cos^2(x)) = -tan(x) * (1/tan(x)) = -1 Vì vậy, ta đã chứng minh là đúng. b) Bắt đầu với phương thức ban đầu: (1/cos^2(x) + 1) * tan(x) = tan^2(x) Tiếp tục chuyển đổi phép tính: 1/cos^2(x) + 1 = tan^2(x) / tan(x) = tan(x) Tiếp theo, ta sẽ tính toán một số giá trị lượng giác: 1/cos^2(x) = sec^2(x) (công thức) lượng giác) sec^2(x) + 1 = tan^2(x) + 1 = sin^2(x)/cos^2(x) + 1 = (sin^2(x) + cos^2(x) ))/cos^2(x) = 1/cos^2(x) Thay thế vào phương trình ban đầu, ta có: 1/cos^2(x) + 1 = 1/cos^2(x) Do đó, ta đã chứng minh được b)đúng.

Trần Công Thanh Tài
Xem chi tiết
myyyy
Xem chi tiết
meme
20 tháng 8 2023 lúc 10:00

a) Để chứng minh đẳng thức: 1 - cos^2(π/2 - x) / (1 - sin^2(π/2 - x)) = -cot(π/2 - x) * tan(π/2 - x) ta sẽ chứng minh cả hai phía bằng nhau. Bên trái: 1 - cos^2(π/2 - x) / (1 - sin^2(π/2 - x)) = sin^2(π/2 - x) / (1 - sin^2(π/2 - x)) = sin^2(π/2 - x) / cos^2(π/2 - x) = (sin(π/2 - x) / cos(π/2 - x))^2 = (cos(x) / sin(x))^2 = cot^2(x) Bên phải: -cot(π/2 - x) * tan(π/2 - x) = -cot(π/2 - x) * (1 / tan(π/2 - x)) = -cot(π/2 - x) * (cos(π/2 - x) / sin(π/2 - x)) = -(cos(x) / sin(x)) * (sin(x) / cos(x)) = -1 Vậy, cả hai phía bằng nhau và đẳng thức được chứng minh. b) Để chứng minh đẳng thức: (1 + cos^2(x)) * (1 + cot^2(x)) * tan(x) = tan^2(x) ta sẽ chứng minh cả hai phía bằng nhau. Bên trái: (1 + cos^2(x)) * (1 + cot^2(x)) * tan(x) = (1 + cos^2(x)) * (1 + (cos(x) / sin(x))^2) * (sin(x) / cos(x)) = (1 + cos^2(x)) * (1 + cos^2(x) / sin^2(x)) * (sin(x) / cos(x)) = (1 + cos^2(x)) * (sin^2(x) + cos^2(x)) / sin^2(x) * (sin(x) / cos(x)) = (1 + cos^2(x)) * 1 / sin^2(x) * (sin(x) / cos(x)) = (1 + cos^2(x)) / sin^2(x) * (sin(x) / cos(x)) = (cos^2(x) + sin^2(x)) / sin^2(x) * (sin(x) / cos(x)) = 1 / sin^2(x) * (sin(x) / cos(x)) = tan^2(x) Bên phải: tan^2(x) Vậy, cả hai phía bằng nhau và đẳng thức được chứng minh.