1.Tìm các số nguyên xy thỏa mãn .
a/xy+3x+2y=5 b/xy+x-3y=16 c/xy-5x+2y=33
Tìm các số nguyên x,y sao cho:
a,xy+3x-2y=12
b,3x+4y-xy=15
c,5x+2y-xy=16
d,xy+12=x+y
a)xy+3x-2y=12
=>x(y+3)-2y=12
=>x(y+3)-2(y+3)=6
<=>(x-2)(y+3)=6
th1:(x-2)=1 <-> x=3
(y+3)=6 <-> y=3
th2:(x-2)=6 <-> x=8
(y+3)=1 <-> y=-2
th3:(x-2)=2 <-> x=4
(y+3)=3 <-> y=0
th4:(x-2)=3 <-> x=5
(y+3)=2 <-> y=-1
Vậy (x,y) thuộc {(3;3);(8;-2);(4;0);(5;-1)
Các câu khác làm tương tự
Tìm các số nguyên x,y biết
a) xy+3x-2y-6=5
b) 5x+2y-xy=16
c) x+y=3 và x-y=15
d) |x|+|y|=1
a.
xy + 3x - 2y - 6 = 5
=>x(y + 3) - 2(y + 3) = 5
=>(x - 2)(y + 3) = 5.
Vì x, y thuộc Z nên x - 2, y + 3 thuộc Z
=> x - 2, y + 3 thuộc ước nguyên của 5
Lập bảng :
x - 2 | -5 | -1 | 1 | 5 |
y + 3 | -1 | -5 | 5 | 1 |
x | -3 | 1 | 3 | 7 |
y | -4 | -8 | 2 | -2 |
Vậy ......
b. Làm tương tự câu a.
c. Ta có x + y = 3 và x - y = 15
Bài này là tổng hiệu của cấp 1, áp dụng cách làm đó thì ta được số lớn là x = (3 + 15) : 2 = 9
Số bé là y = 9 - 15 = -6
d. Ta có : |x| + |y| = 1
=>|x| = 1 - |y|
Vì |x|, |y| >= 0 và |x| = 1 - |y| nên 0 =< |x|, |y| =< 1
Vì x, y thuộc Z nên x = 0 thì y = 1 hoặc -1 và ngược lại y = 0 thì x = 1 hoặc -1
Bài 5 Cho x, y là các số thực thỏa mãn x^2 + y^2 + xy 3x 3y + 3=0. Chứng minh biểu thức P = (3x +2y 6)^1010 + ( xy+1)^1011 + 2021 có giá trị là một số nguyên.
Mình tự làm tận 1h nên hơi dài 1 tí nhưng chắc chắn đúng đó :))
Ta có: x2 + y2 + xy .- 3x - 3y + 3 = 0
=>( x2 - 2x + 1) - x + ( y2 - 2y + 1) - y + xy + 1 = 0
=> (x-1)2 + (y-1)2 + ( -x + -y + xy +1) = 0
=> (x-1)2 + (y-1)2 + [(-x+ xy) + (-y+1)] = 0
=> (x-1)2 + (y-1)2 + [ x(y-1) - (y-1)] = 0
=> (x-1)2 + (y-1)2 + (x-1)(y-1) = 0
=> (x-1)2 + 2.1/2.(x-1)(y-1) + (1/2)2.(y-1)2 + 3/4.(y-1)2 = 0
=> [x-1+1/2(y-1) ]2 + 3/4.(y-1)2 = 0
Vì: [x-1+1/2(y-1) ]2 >= 0 với mọi x;y thuộc R
3/4.(y-1)2 >= 0 với mọi y thuộc R
=> (x-1+1/2y -1/2 = 0) và ( y-1 = 0)
=> (x = 1/2 -1/2y+1) và (y=1)
=> x = y =1
Chỗ này thay giá trị vào biểu thức rồi chứng minh = cách chỉ ra các cơ số của từng lũy thừa là số nguyên là xong.
tìm các số nguyên x,y thỏa mãn :
x2+3x+5=xy+2y
\(x^2+3x+5=xy+2y\\ \Leftrightarrow x^2+3x-xy-2y+5=0\\ \Leftrightarrow x\left(x+2\right)-y\left(x+2\right)+\left(x+2\right)+3=0\\ \Leftrightarrow\left(x+2\right)\left(x-y+1\right)=-3=\left(-1\right)\cdot3=\left(-3\right)\cdot1\)
\(TH_1:\left\{{}\begin{matrix}x+2=-3\\x-y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-5\end{matrix}\right.\to\left(-5;-5\right)\\ TH_2:\left\{{}\begin{matrix}x+2=3\\x-y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\to\left(1;3\right)\\ TH_3:\left\{{}\begin{matrix}x+2=1\\x-y+1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\to\left(-1;3\right)\\ TH_4:\left\{{}\begin{matrix}x+2=-1\\x-y+1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-5\end{matrix}\right.\to\left(-3;-5\right)\)
Vậy \(\left(x;y\right)=\left(-5;-5\right);\left(1;3\right);\left(-1;3\right);\left(-3;-5\right)\)
cho các số thực dương x,y thỏa mãn điều kiện x+y=2016.Tìm giá trị nhỏ nhất của biểu thức:
P=\(\sqrt{5x^2+xy+3y^2}+\sqrt{3x^2+xy+5y^2}+\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)
\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)
\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)
\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)
\(=5\left(a+b\right)=5.2016=10080\)
alibaba nguyễn Em kiểm tra lại bài làm của mình nhé!
Nguyễn Linh Chi haha, em nhìn ra rối, chỗ dấu "=" thứ 2 phải sửa lại thành dấu "+" ,còn anh ấy phân tích có sai chỗ nào thì em ko biết:D (hình như là đúng)
Tìm các cặp số (x,y) biết:
2xy+x+2y=5;xy+3x-3y=5
xy+2x+2y=16;x+xy+y=9
xy-3x-y=0;9xy+3x+3y=51(x,y thuộcN*) 2x-5y+5xy=14
\(\left\{{}\begin{matrix}2xy+x+2y=5\\xy+3x-3y=5\end{matrix}\right.\)
\(\Rightarrow2xy+x+2y=xy+3x-3y\)
\(\Rightarrow2xy+x+2y-xy-3x+3y=0\)
\(\Rightarrow\left(2xy-xy\right)+\left(x-3x\right)+\left(2y+y\right)=0\)
\(\Rightarrow xy-2x+3y=0\)
\(\Rightarrow xy-2x+3y-6=-6\)
\(\Rightarrow x\left(y-2\right)+3\left(y-2\right)=-6\)
\(\Rightarrow\left(x+3\right)\left(y-2\right)=-6\)
Xét ước là xong,mấy câu kia tương tự
bài này của bn giống mk DDT Miner Ter
Bài 1: Chứng minh mọi số nguyên x,y thì:
`a)B=x^3y^2-3x^2y+2y` chia hết `(xy -1)`
`b)C=xy(x^3 +2)-y(xy^3+2x)` chia hết `(x^2 + xy + y^2)`
b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)
\(=x^4y+2xy-xy^4-2xy\)
\(=xy\left(x^3-y^3\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)
Tìm các cặp số nguyên (x;y) thỏa mãn xy+3x-2y=11
xy+3x-2y=11
=>x(y+3)=11+2y
=>x=\(\dfrac{2y+11}{y+3}\). Vì x là số nguyên nên:
2y+11 ⋮ y+3
=>2(y+3)+5 ⋮ y+3
=>5 ⋮ y+3
=>y+3∈Ư(5)
=>y+3∈{1;-1;5;-5}
=>y∈{-2;-4;2;-8}
=>x∈{7;-3;3;1).
- Vậy các cặp số (x;y) là (7;-2) , (-3;-4) , (3;2) ; (1;-8)
BT11: Tìm hiệu A-B biết
\(a,-x^2y+A+2xy^2-B=3x^2y-4xy^2\)
\(b,5xy^2-A-6yx^2+B=-7xy^2+8x^2y\)
\(c,3x^2y^3-A-5x^3y^2+B=8x^2y^3-4x^3y\)
\(d,-6x^2y^3+A-3x^3y^2-B=2x^2y^3-7x^3y\)
\(e,A-\dfrac{3}{8}xy^2-B+\dfrac{5}{6}x^2y=\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\)
\(f,5xy^3-A-\dfrac{5}{8}yx^3+B=\dfrac{21}{4}xy^3-\dfrac{7}{6}x^3y\)
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2