Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
títtt
Xem chi tiết
nguyễn thị hương giang
14 tháng 10 2023 lúc 20:14

loading...  

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 11 2023 lúc 12:25

1: \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{6-\dfrac{8}{n}}{1-\dfrac{1}{n}}=\dfrac{6-0}{1-0}\)

\(=\dfrac{6}{1}=6\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(1+\dfrac{5}{n}-\dfrac{3}{n^2}\right)}{n^3\left(4-\dfrac{2}{n^2}+\dfrac{5}{n^3}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\left(\dfrac{1}{n}\cdot\dfrac{1+\dfrac{5}{n}-\dfrac{3}{n^2}}{\left(4-\dfrac{2}{n^2}+\dfrac{5}{n^3}\right)}\right)\)

=0 

Hobiee
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 11 2023 lúc 21:24

a: \(\lim\limits\dfrac{5n+1}{2n}=\lim\limits\dfrac{\dfrac{5n}{n}+\dfrac{1}{n}}{\dfrac{2n}{n}}=\lim\limits\dfrac{5+\dfrac{1}{n}}{2}=\dfrac{5+0}{2}=\dfrac{5}{2}\)

b: \(\lim\limits\dfrac{6n^2+8n+1}{5n^2+3}\)

\(=\lim\limits\dfrac{\dfrac{6n^2}{n^2}+\dfrac{8n}{n^2}+\dfrac{1}{n^2}}{\dfrac{5n^2}{n^2}+\dfrac{3}{n^2}}\)

\(=\lim\limits\dfrac{6+\dfrac{8}{n}+\dfrac{1}{n^2}}{5+\dfrac{3}{n^2}}\)

\(=\dfrac{6+0+0}{5+0}=\dfrac{6}{5}\)

c: \(\lim\limits\dfrac{3^n+2^n}{4\cdot3^n}\)

\(=\lim\limits\dfrac{\dfrac{3^n}{3^n}+\left(\dfrac{2}{3}\right)^n}{4\cdot\left(\dfrac{3^n}{3^n}\right)}\)

\(=\lim\limits\dfrac{1+\left(\dfrac{2}{3}\right)^n}{4}=\dfrac{1+0}{4}=\dfrac{1}{4}\)

d: \(\lim\limits\dfrac{\sqrt{n^2+5n+3}}{6n+2}\)

\(=\lim\limits\dfrac{\sqrt{\dfrac{n^2}{n^2}+\dfrac{5n}{n^2}+\dfrac{3}{n^2}}}{\dfrac{6n}{n}+\dfrac{2}{n}}\)

\(=\lim\limits\dfrac{\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{6+\dfrac{2}{n}}\)

\(=\dfrac{\sqrt{1+0+0}}{6}=\dfrac{1}{6}\)

@DanHee
4 tháng 11 2023 lúc 21:24

\(a,lim\dfrac{5n+1}{2n}=lim\dfrac{\dfrac{5n}{n}+\dfrac{1}{n}}{\dfrac{2n}{n}}=lim\dfrac{5+\dfrac{1}{n}}{2}=\dfrac{5}{2}\\ b,lim\dfrac{6n^2+8n+1}{5n^2+3}=lim\dfrac{\dfrac{6n^2}{n^2}+\dfrac{8n}{n^2}+\dfrac{1}{n^2}}{\dfrac{5n^2}{n^2}+\dfrac{3}{n^2}}=lim\dfrac{6+\dfrac{8}{n}+\dfrac{1}{n^2}}{5+\dfrac{3}{n^2}}=\dfrac{6}{5}\)

\(c,lim\dfrac{3^n+2^n}{4.3^n}=\dfrac{\dfrac{3^n}{3^n}+\dfrac{2^n}{3^n}}{\dfrac{4.3^n}{3^n}}=\dfrac{1+\left(\dfrac{2}{3}\right)^n}{4}=\dfrac{1}{4}\)

\(d,lim\dfrac{\sqrt{n^2+5n+3}}{6n+2}=lim\dfrac{\sqrt{\dfrac{n^2+5n+3}{n^2}}}{\dfrac{6n}{n}+\dfrac{2}{n}}=lim\dfrac{\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{6+\dfrac{2}{n}}=\dfrac{1}{6}\)

Trên con đường thành côn...
4 tháng 11 2023 lúc 21:28

\(a\text{)}lim\dfrac{5n+1}{2n}=lim\dfrac{5}{2}+lim\dfrac{1}{2n}=\dfrac{5}{2}\)

\(b\text{)}lim\dfrac{6n^2+8n+1}{5n^2+3}=lim\dfrac{6+\dfrac{8}{n}+\dfrac{1}{n^2}}{5+\dfrac{3}{n^2}}=\dfrac{6}{5}\)

\(c\text{)}lim\dfrac{3^n+2^n}{4.3^n}=lim\dfrac{\left(\dfrac{3}{3}\right)^n+\left(\dfrac{2}{3}\right)^n}{4}=\dfrac{1}{4}\)

\(d\text{)}lim\dfrac{\sqrt{n^2+5n+3}}{6n+2}=lim\dfrac{n\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{n\left(6+\dfrac{2}{n}\right)}=lim\dfrac{\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{6+\dfrac{2}{n}}=\dfrac{1}{6}\)

títtt
Xem chi tiết
Minh Hiếu
13 tháng 10 2023 lúc 20:57

1) \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}=\lim\limits_{n\rightarrow\infty}\dfrac{2n\left(1-\dfrac{4}{n}\right)}{n\left(1-\dfrac{1}{n}\right)}=2\)

2) \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(1+\dfrac{5}{n}-\dfrac{3}{n^2}\right)}{n^3\left(4-\dfrac{2}{n^2}+\dfrac{5}{n^3}\right)}=\dfrac{1}{4n}=\infty\)

3) \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4n^4-3n^2+4\right)=\lim\limits_{n\rightarrow\infty}n^5\left(-2+\dfrac{4}{n}-\dfrac{3}{n^2}+\dfrac{4}{n^5}\right)=-2n^5=-\infty\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 11 2023 lúc 13:43

1: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5n-3}{-n+5}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)}{n\left(-1+\dfrac{5}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\left[n\left(\dfrac{3+\dfrac{5}{n}-\dfrac{3}{n^2}}{-1+\dfrac{5}{n}}\right)\right]\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{3+\dfrac{5}{n}-\dfrac{3}{n^2}}{-1+\dfrac{5}{n}}=\dfrac{3+0-0}{-1+0}=\dfrac{3}{-1}=-3< 0\end{matrix}\right.\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{-7n^2+4}{-n+5}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{7n^2-4}{n-5}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(7-\dfrac{4}{n^2}\right)}{n\left(1-\dfrac{5}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\left[n\cdot\dfrac{\left(7-\dfrac{4}{n^2}\right)}{1-\dfrac{5}{n}}\right]\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{7-\dfrac{4}{n^2}}{1-\dfrac{5}{n}}=\dfrac{7-0}{1-0}=7>0\end{matrix}\right.\)

Maoromata
Xem chi tiết
đoàn ngọc hân
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 1 2021 lúc 13:22

\(a=\lim\left(\dfrac{2n^3\left(5n+1\right)+\left(2n^2+3\right)\left(1-5n^2\right)}{\left(2n^2+3\right)\left(5n+1\right)}\right)\)

\(=\lim\left(\dfrac{2n^3-13n^2+3}{\left(2n^2+3\right)\left(5n+1\right)}\right)=\lim\dfrac{2-\dfrac{13}{n}+\dfrac{3}{n^3}}{\left(2+\dfrac{3}{n^2}\right)\left(5+\dfrac{1}{n}\right)}=\dfrac{2}{2.5}=\dfrac{1}{5}\)

\(b=\lim\left(\dfrac{n-2}{\sqrt{n^2+n}+\sqrt{n^2+2}}\right)=\lim\dfrac{1-\dfrac{2}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1+\dfrac{2}{n}}}=\dfrac{1}{2}\)

\(c=\lim\dfrac{\sqrt{1+\dfrac{3}{n^3}-\dfrac{2}{n^4}}}{2-\dfrac{2}{n}+\dfrac{3}{n^2}}=\dfrac{1}{2}\)

\(d=\lim\dfrac{\sqrt{1-\dfrac{4}{n}}-\sqrt{4+\dfrac{1}{n^2}}}{\sqrt{3+\dfrac{1}{n^2}}-1}=\dfrac{1-2}{\sqrt{3}-1}=-\dfrac{1+\sqrt{3}}{2}\)

Dương thị bầu
15 tháng 3 2022 lúc 20:57

Lim 3.4n-2.13n/5n+6.13n

títtt
Xem chi tiết
Nguyễn Đức Trí
14 tháng 10 2023 lúc 9:44

1) \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5n-3}{-n+5}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(3n+5-\dfrac{3}{n}\right)}{-n\left(1-\dfrac{5}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{3n+5-\dfrac{3}{n}}{-\left(1-\dfrac{5}{n}\right)}\)

\(=\left[{}\begin{matrix}-\infty\left(n\rightarrow+\infty\right)\\+\infty\left(n\rightarrow-\infty\right)\end{matrix}\right.\)

Bài 2,3 tương tự, bạn tự làm nhé!

ánh tuyết nguyễn
Xem chi tiết
Akai Haruma
29 tháng 1 2023 lúc 21:23

a.

\(A=\lim\frac{\sqrt[3]{n^6-7n^3-5n+8}}{n+12}=\lim \frac{\sqrt[3]{\frac{n^6-7n^3-5n+8}{n^3}}}{\frac{n+12}{n}}=\lim \frac{\sqrt[3]{n^3-7-\frac{5}{n^2}+\frac{8}{n^3}}}{1+\frac{12}{n}}\)

Ta thấy:

\(\lim\sqrt[3]{n^3-7-\frac{5}{n^2}+\frac{8}{n^3}}=\infty \)

\(\lim (1+\frac{12}{n})=1\)

Suy ra $A=\infty$

 

Akai Haruma
29 tháng 1 2023 lúc 21:35

b.

\(B=\lim\frac{1}{\sqrt{3n+2}-\sqrt{2n+1}}=\lim \frac{1}{\frac{3n+2-(2n+1)}{\sqrt{3n+2}+\sqrt{2n+1}}}=\lim \frac{\sqrt{3n+2}+\sqrt{2n+1}}{n+1}\)

\(=\lim \frac{\sqrt{\frac{3n+2}{n}}+\sqrt{\frac{2n+1}{n}}}{\frac{n+1}{\sqrt{n}}}=\lim \frac{\sqrt{3+\frac{2}{n}}+\sqrt{2+\frac{1}{n}}}{\sqrt{n}+\frac{1}{\sqrt{n}}}\)

Ta thấy:

\(\lim( \sqrt{3+\frac{2}{n}}+\sqrt{2+\frac{1}{n}})=\sqrt{3}+\sqrt{2}>0\)

\(\lim (\sqrt{n}+\frac{1}{\sqrt{n}})=\infty\)

$\Rightarrow B=\infty$

Akai Haruma
29 tháng 1 2023 lúc 21:38

c.

\(C=\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{4(\frac{3}{7})^n+7}{2(\frac{5}{7})^n+1}\)

Ta thấy:

\(\lim [4(\frac{3}{7})^n+7]=4.0+7=7\) với $|\frac{3}{7}|<1$

\(\lim [2(\frac{5}{7})^n+1]=2.0+1=1\) với $|\frac{5}{7}|<1$

$\Rightarrow C=\frac{7}{1}=7$

Đừng gọi tôi là Jung Hae...
Xem chi tiết
Minh Hiếu
11 tháng 2 2022 lúc 5:39

\(a,lim\dfrac{2n+1}{-3n+2}\)

\(=lim\dfrac{2+\dfrac{1}{n}}{-3+\dfrac{2}{n}}=-\dfrac{2}{3}\)

\(b,lim\dfrac{5n^3-2n+1}{n-2n^3}\)

\(=lim\dfrac{5-\dfrac{2}{n^2}+\dfrac{1}{n^3}}{\dfrac{1}{n^2}-2}=\dfrac{5}{-2}\)