tìm gtnn gtln của hàm số
\(y=\sqrt{3}sin2x-cos2x\)
\(y=4sinxcosx+1\)
\(y=sin^4x+cos^4x+4\)
Tìm GTLN và GTNN của hàm số sau :
\(y\)\(=cos(3x-\frac{\pi}{6})+cos(3x+\frac{\pi}{3})-4\)
\(y=\sqrt{3}sinx+cosx+2\)
\(y=2sin2x.cos\left(2x-\frac{\pi}{3}\right)+5\)
\(y=sin^6x+cos^6x+3sin2x+5\)
\(y=cos^4x+sin4x-2\)
Tìm x :
\(sin^4x+cos^4x=\frac{3}{4}\)
Thanks youuuuuuuuuuuu
a/
\(y=2cos\left(3x+\frac{\pi}{12}\right).cos\left(-\frac{\pi}{4}\right)-4\)
\(=\sqrt{2}cos\left(3x+\frac{\pi}{12}\right)-4\)
Do \(-1\le cos\left(3x+\frac{\pi}{12}\right)\le1\Rightarrow-\sqrt{2}-4\le y\le\sqrt{2}-4\)
\(y_{max}=\sqrt{2}-4\) khi \(sin\left(3x+\frac{\pi}{12}\right)=1\)
\(y_{min}=-\sqrt{2}-4\) khi \(sin\left(3x+\frac{\pi}{12}\right)=-1\)
b/
\(y=2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)+2=2sin\left(x+\frac{\pi}{6}\right)+2\)
Do \(-1\le sin\left(x+\frac{\pi}{6}\right)\le1\)
\(\Rightarrow0\le y\le4\)
c/
\(y=sin\left(4x-\frac{\pi}{3}\right)+sin\left(\frac{\pi}{3}\right)+5\)
\(=sin\left(4x-\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}+5\)
Do \(-1\le sin\left(4x-\frac{\pi}{3}\right)\le1\)
\(\Rightarrow4+\frac{\sqrt{3}}{2}\le y\le6+\frac{\sqrt{3}}{2}\)
d/
\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+3sin2x+5\)
\(y=6-3sin^2x.cos^2x+3sin2x\)
\(y=-\frac{3}{4}sin^22x+3sin2x+6\)
\(y=\frac{3}{4}\left(sin2x+1\right)\left(5-sin2x\right)+\frac{9}{4}\ge\frac{9}{4}\)
\(y_{min}=\frac{9}{4}\) khi \(sin2x=-1\)
\(y=\frac{3}{4}\left(sin2x-1\right)\left(3-sin2x\right)+\frac{33}{4}\le\frac{33}{4}\)
\(y_{max}=\frac{33}{4}\) khi \(sin2x=1\)
e/
Đề câu này chắc chắn đúng chứ bạn?
f/
\(sin^4x+cos^4x=\frac{3}{4}\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=\frac{3}{4}\)
\(\Leftrightarrow1-\frac{1}{2}\left(2sinx.cosx\right)^2=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{1}{2}sin^22x=0\)
\(\Leftrightarrow1-2sin^22x=0\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)
Tìm tham số m để hàm số sau xác định trên R
1/ \(y=\sqrt{cos^2x+cosx-2m+1}\)
2/ \(y=\sqrt{cos2x-2cosx+m}\)
3/ \(y=\sqrt{sin^4x+cos^4x-sin2x-m}\)
1/ Để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) + cos(x ) - 2m + 1 > 0 Để giải phương trình này, ta sử dụng một số phép biến đổi: cos^2(x) + cos(x) - 2m + 1 = (cos(x) + 2)(cos(x) - m + 1) Điều kiện để biểu thức trên dương là: cos(x) + 2 > 0 và cos(x) - m + 1 > 0 Với cos(x) + 2 > 0, ta có -2 < cos( x) < 0 Với cos(x) - m + 1 > 0, ta có m - 1 < cos(x) < 1 Tổng Hàm, để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, tham số m phải đáp ứng điều kiện -2 < cos(x) < 0 và m - 1 < cos(x) < 1. 2/ Để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) - 2cos(x) + m > 0 Đây là một phương trình bậc hai theo cos(x). Để giải phương trình này, ta sử dụng công thức delta: Δ = b^2 - 4ac Ở đây, a = 1, b = -2, c = m. Ta có: Δ = (-2)^2 - 4(1)(m) = 4 - 4m = 4(1 - m) Để phương trình có nghiệm thì Δ > 0. Tức là 1 - m > 0 hay m < 1. Tổng quát, để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, tham số m phải đáp ứng m < 1. 3/ Để hàm số y = √sin^ 4 (x) + cos^4(x) - sin^2(x) - m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: sin^4(x) + cos^4(x) - sin ^2(x) - m > 0 Đây cũng là một phương trình bậc hai theo sin(x). Ta sử dụng công thức delta as on, with a = 1, b = -1, c = -m. Δ = (-1)^2 - 4(1)(-m) = 1 + 4m = 4m + 1 Để phương trình có nghiệm thì Δ > 0. Tức là m > -1/4. Tổng quát, để hàm số y = √sin^4(x) + cos^4(x) - sin^2(x) - m xác định trên R, tham số m phải thỏa mãn m > -1/4.
tìm gtln, gtnn của hàm số
a) y=\(\sqrt{1-4x}\) +2x-1
b) y=\(\frac{1}{\sqrt{3+x}+\sqrt{6-x}+3\sqrt{\left(3+x\right)\left(6-x\right)}}\)
Tìm GTLN và GTNN của hàm số:
\(y=\frac{1}{2}\sin x+\frac{\sqrt{3}}{2}\cot x\)
\(y=\sqrt{\sin^2x+2\cot^2x}\)
TÌM GTLN GTNN:
a. y=cos x - \(\sqrt{3}\)sin x
b. y= sin2x-cos2x+1
a) Ta có:
\(y=2\left(\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)=2sin\left(\dfrac{\pi}{6}-x\right)\)
\(\Rightarrow-2\le y\le2\) (Do \(-1\le sin\alpha\le1\))
Vậy min y = -2 , max y = 2
Tìm GTLN, GTNN:
a, \(y=\sin x+\cos x\).
b, \(y=\dfrac{1}{2}\sin x+\dfrac{\sqrt{3}}{2}\cos x+3\).
c, \(y=\sqrt{3}\sin2x-\cos2x\).
a: \(y=\sqrt{2}sin\left(x+\dfrac{pi}{4}\right)\)
\(-1< =sin\left(x+\dfrac{pi}{4}\right)< =1\)
=>\(-\sqrt{2}< =y< =\sqrt{2}\)
\(y_{min}=-\sqrt{2}\) khi sin(x+pi/4)=-1
=>x+pi/4=-pi/2+k2pi
=>x=-3/4pi+k2pi
\(y_{max}=\sqrt{2}\) khi sin(x+pi/4)=1
=>x+pi/4=pi/2+k2pi
=>x=pi/4+k2pi
b: \(y=sinx\cdot cos\left(\dfrac{pi}{3}\right)+cosx\cdot sin\left(\dfrac{pi}{3}\right)+3\)
\(=sin\left(x+\dfrac{pi}{3}\right)+3\)
-1<=sin(x+pi/3)<=1
=>-1+3<=sin(x+pi/3)+3<=4
=>2<=y<=4
y min=2 khi sin(x+pi/3)=-1
=>x+pi/3=-pi/2+k2pi
=>x=-5/6pi+k2pi
y max=4 khi sin(x+pi/3)=1
=>x+pi/3=pi/2+k2pi
=>x=pi/6+k2pi
c: \(y=2\cdot\left(sin2x\cdot\dfrac{\sqrt{3}}{2}-cos2x\cdot\dfrac{1}{2}\right)\)
\(=2sin\left(2x-\dfrac{pi}{6}\right)\)
-1<=sin(2x-pi/6)<=1
=>-2<=y<=2
y min=-2 khi sin(2x-pi/6)=-1
=>2x-pi/6=-pi/2+k2pi
=>2x=-1/3pi+k2pi
=>x=-1/6pi+kpi
y max=2 khi sin(2x-pi/6)=1
=>2x-pi/6=pi/2+k2pi
=>2x=2/3pi+k2pi
=>x=1/3pi+kpi
\(y=sin^4x+cos^4x+sin2x\)
GTLN và GTNN là = ?
Mn giải giúp mình với mình cảm ơn
Có: y=sin^4x−cos^4x
= (sin^2x−cos^2x)(sin^2x+cos^2x)
= −cos2x
=> −1≤y≤1
=> min y=−1⇔cos2x=1⇔x=kπ
max y=1⇔cos2x=−1⇔x=π2+kπ
Vậy min y = -1; max y=1
\(y=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+sin2x\)
\(=1-\dfrac{1}{2}sin^22x+sin2x\)
Đặt \(sin2x=t\in\left[-1;1\right]\Rightarrow y=f\left(t\right)=-\dfrac{1}{2}t^2+t+1\)
\(-\dfrac{b}{2a}=1\) ; \(f\left(-1\right)=-\dfrac{1}{2}\) ; \(f\left(1\right)=\dfrac{3}{2}\)
\(\Rightarrow y_{min}=-\dfrac{1}{2}\) khi \(sin2x=-1\)
\(y_{max}=\dfrac{3}{2}\) khi \(sin2x=1\)
Tìm GTLN , GTNN của hs lượng giác
e) y = 1/ √3 + sin^2x ( dấu dấu căn ngang số 3 thôi nhé)
f) y = ✓9 + 4.cos2x
g) y = √2 . sinx + cosx
h) y = sin^4x + cos^4x
t) y = sin^6x + cos^6x
e/ Tử số đến đâu và mẫu số đến đâu bạn?
f/ Căn đến đâu bạn?
g/ Căn đến đâu bạn?
h/ \(y=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\)
\(=1-\frac{1}{2}\left(2sinx.cosx\right)^2=1-\frac{1}{2}sin^22x\)
Do \(0\le sin^22x\le1\Rightarrow\frac{1}{2}\le y\le1\)
\(y_{max}=1\) khi \(sin^22x=0\)
\(y_{min}=\frac{1}{2}\) khi \(sin^22x=1\)
t/ \(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)
\(y=1-3sin^2x.cos^2x=1-\frac{3}{4}\left(2sinx.cosx\right)^2\)
\(y=1-\frac{3}{4}sin^22x\)
Tượng tự câu trên \(\Rightarrow\frac{1}{4}\le y\le1\)
\(y_{min}=\frac{1}{4}\) khi \(sin^22x=1\)
\(y_{max}=1\) khi \(sin^22x=0\)
Tốt nhất là bạn sử dụng công cụ gõ công thức
Tìm m để hàm số \(y=\sqrt{\dfrac{sin2x-cos2x+m-1}{6\left(cos^4x+sin^4x\right)+cos8x+7-5m}}\) xác định với mọi số thực x
\(y=\sqrt{\dfrac{\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1}{2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m}}\)
Hàm xác định trên R khi:
TH1: \(\left\{{}\begin{matrix}\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1\ge0\\2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}-m\le\min\limits_R\left(\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)-1\right)=-1-\sqrt{2}\\5m< \min\limits_R\left(2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}\right)=\dfrac{327}{32}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ge1+\sqrt{2}\\m< \dfrac{327}{160}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
Th2: \(\left\{{}\begin{matrix}\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1\le0\\2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m< 0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\min\limits_R\left(\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)-1\right)=-1-\sqrt{2}\\5m>\max\limits_R\left(2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}\right)=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le-1-\sqrt{2}\\m>\dfrac{14}{5}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
24. Tìm GTLN của hàm số: \(y=3\cos\left(x-\dfrac{\pi}{2}\right)+1\)
26. a) Tìm GTLN của hàm số: \(y=\cos2x+\sin2x\)
b) Giải PT: \(\sin x+\sqrt{3}\cos x=1\)
24.
\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)
\(y_{max}=4\)
26.
\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)
Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)
\(y_{max}=\sqrt{2}\)
b.
\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)