tìm x,y,z
x^3/8=y^3'64=z^3/216 và x^2+y^2+z^2=14
giải ra giúp mình nhé
Áp dụng BĐT Cauchy:
[TEX]xyz\geq (x+y-z)(y+z-x)(x+z-y)=(6-2x)(6-2y)(6-2z) \\ =216-72(x+y+z)+24(xy+yz+zx)-8xyz=24(xy+yz+xz)-8xyz-216 \\ \Rightarrow 9xyz\geq 24(xy+yz+xz)-216 \\ \Rightarrow xyz\geq \frac{8}{3}(xy+yz+xz)-24 \\ \Rightarrow x^{2}+y^2+z^2-xy-yz-zx+xyz\geq x^{2}+y^2+z^2+\frac{5}{3}(xy+yz+zx)-24 \\ \Leftrightarrow (x+y+z)^{2}-\frac{1}{3}( xy+yz+zx)-24\geq (x+y+z)^{2}-24-\frac{1}{9}(x+y+z)^{2}=8[/TEX]
Dấu "=" xảy ra khi [TEX]x=y=z=2[/TEX]
Tìm x,y,z :
a , 3/2x = 4/5y = 6/7z và x- y -2z= -45
b , x/2 = y/3 = z/4 và x^2 - y^2 + 2z^2=108
c, x^3 /8 = y^3/64 = z^3/216 và x^2 + y ^2 + z^2 = 14
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)
Ta có: \(x^2-y^2+2z^2=108\)
\(\Leftrightarrow\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\)
\(\Leftrightarrow4k^2-9k^2+2\cdot16k^2=108\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot2=4\\y=3k=3\cdot2=6\\z=4k=4\cdot2=8\end{matrix}\right.\)
Trường hợp 2: k=-2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-2\right)=-4\\y=3k=3\cdot\left(-2\right)=-6\\z=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)
Tìm x , y , z , biết :
X^2/8 = y^3/64 = z^3/216 và x^2 + y^2 + z^2 = 14😎
Tìm x,y,z biết:
a,x/3=y/4 và 2x+y=80
b,x÷2=y÷(-5) và x-y=-49
c,x/2=y/3,y/4=z/5 và x+y-z=10
d,x^3/8=y^3/64=z^3/216 và 2x^2+2y^2-z^2=1
Các bn ơi giúp mk với mk cần gấp!!!!!!
tìm x, y,z biết :
1) x-1/3 = y-2/4 = z+7/5 và x+y-z = 8
2 ) x+1/3 = y+2/-4 = z-3/5 và 3x + 2y +42 = 47
làm nhanh giúp mình nhé
mình cần gấp
1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)
mà x+y-z=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)
=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)
2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)
mà 3x+2y=47-42=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)
=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)
x3/8 =y3/64 =z3/216 và x2 + y2 + z2=14
GIÚP MÌNH NHA
tìm x,y,z biết
a) x/3=y/6 biết 2x^2-y^2=-8
b) x/2=y/3=z/5 biết x^2+3y^2-z^2=150
ai nhanh và đầy đủ mình sẽ cho 2 tick
mình cần gấp giúp mình nhé
x3:8=y3:64=z3:216 và x2+y2+z2=14 tìm x;y;z
a) x^3/8 = y^3/64 = z^3/216 và x^2 + y^2 + z^2 = 14
b) x^3/8 = y^3/27 = z^3/64 và x^2 + 2y^2 - 3z^2 = -650
a: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
=>\(\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)
=>\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
=>\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
Đặt \(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=k\)
=>x=k; y=2k; z=3k
\(x^2+y^2+z^2=14\)
=>\(k^2+4k^2+9k^2=14\)
=>\(14k^2=14\)
=>\(k^2=1\)
=>k=1 hoặc k=-1
TH1: k=1
=>\(x=k=1;y=2k=2\cdot1=2;z=3k=3\cdot1=3\)
TH2: k=-1
=>\(x=k=-1;y=2k=2\cdot\left(-1\right)=-2;z=3k=3\cdot\left(-1\right)=-3\)
b: \(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\)
=>\(\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{3}\right)^3=\left(\dfrac{z}{4}\right)^3\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
=>x=2k; y=3k; z=4k
\(x^2+2y^2-3z^2=-650\)
=>\(\left(2k\right)^2+2\cdot\left(3k\right)^2-3\cdot\left(4k\right)^2=-650\)
=>\(4k^2+18k^2-3\cdot16k^2=-650\)
=>\(-26\cdot k^2=-650\)
=>\(k^2=25\)
=>\(\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\)
TH1: k=5
=>\(x=2\cdot5=10;y=3\cdot5=15;z=4\cdot5=20\)
TH2: k=-5
=>\(x=2\cdot\left(-5\right)=-10;y=3\cdot\left(-5\right)=-15;z=4\cdot\left(-5\right)=-20\)