Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Không Hiển Thị Được
Xem chi tiết
Minnie_YM
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 0:02

b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)

Ta có: \(x^2-y^2+2z^2=108\)

\(\Leftrightarrow\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\)

\(\Leftrightarrow4k^2-9k^2+2\cdot16k^2=108\)

\(\Leftrightarrow k^2=4\)

Trường hợp 1: k=2

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot2=4\\y=3k=3\cdot2=6\\z=4k=4\cdot2=8\end{matrix}\right.\)

Trường hợp 2: k=-2

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-2\right)=-4\\y=3k=3\cdot\left(-2\right)=-6\\z=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)

Hồ Anh Dũng
Xem chi tiết
The Joker AD
Xem chi tiết
Phạm thị ngà
Xem chi tiết

1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)

mà x+y-z=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)

=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)

2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)

mà 3x+2y=47-42=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)

=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)

Beh5cyk
Xem chi tiết
ô là la
Xem chi tiết
nguyen cong dang
Xem chi tiết
meme
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2023 lúc 20:41

a: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

=>\(\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)

=>\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

=>\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)

Đặt \(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=k\)

=>x=k; y=2k; z=3k

\(x^2+y^2+z^2=14\)

=>\(k^2+4k^2+9k^2=14\)

=>\(14k^2=14\)

=>\(k^2=1\)

=>k=1 hoặc k=-1

TH1: k=1

=>\(x=k=1;y=2k=2\cdot1=2;z=3k=3\cdot1=3\)

TH2: k=-1

=>\(x=k=-1;y=2k=2\cdot\left(-1\right)=-2;z=3k=3\cdot\left(-1\right)=-3\)

b: \(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\)

=>\(\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{3}\right)^3=\left(\dfrac{z}{4}\right)^3\)

=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

=>x=2k; y=3k; z=4k

\(x^2+2y^2-3z^2=-650\)

=>\(\left(2k\right)^2+2\cdot\left(3k\right)^2-3\cdot\left(4k\right)^2=-650\)

=>\(4k^2+18k^2-3\cdot16k^2=-650\)

=>\(-26\cdot k^2=-650\)

=>\(k^2=25\)

=>\(\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\)

TH1: k=5

=>\(x=2\cdot5=10;y=3\cdot5=15;z=4\cdot5=20\)

TH2: k=-5

=>\(x=2\cdot\left(-5\right)=-10;y=3\cdot\left(-5\right)=-15;z=4\cdot\left(-5\right)=-20\)