Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần thanh Lam
Xem chi tiết
Thiên An
27 tháng 7 2017 lúc 21:05

Đặt  \(P=\frac{x^2-8x+6}{x^2+1}\)

\(\Leftrightarrow P\left(x^2+1\right)=x^2-8x+6\)

\(\Leftrightarrow\left(P-1\right)x^2+8x+\left(P-6\right)=0\)

Ta có  \(\Delta'=16-\left(P-1\right)\left(P-6\right)=-P^2+7P+10\)

Vì  \(\Delta'\ge0\)  \(\Rightarrow-P^2+7P+10\ge0\)

\(\Leftrightarrow\frac{7-\sqrt{89}}{2}\le P\le\frac{7+\sqrt{89}}{2}\)

Vậy GTLN của P là  \(\frac{7+\sqrt{89}}{2}\)

Kurosaki Akatsu
27 tháng 7 2017 lúc 20:24

Đặt \(A=\frac{x^2-8x+6}{x^2+1}=1+\frac{5-8x}{x^2+1}\)

Để A max thì 

\(\frac{5-8x}{x^2+1}\) lớn nhất 

Có : \(x^2+1\ge1\)

\(\Rightarrow Max=1\)

<=> x = 0

=> \(\frac{5-8x}{x^2+1}\le\frac{5-8.0}{1}=5\)

Vậy \(Max_A=6\)

<=> x = 0

Thiên An
27 tháng 7 2017 lúc 20:29

Kurosaki Akatsu giải sai rồi nha

Minh Ngọc Đoàn
Xem chi tiết
Le Thi Khanh Huyen
3 tháng 7 2016 lúc 17:24

\(A=2x^2+8x-24\)

\(=2\left(x^2+4x-12\right)\)

\(=2\left[x^2+4x-4-8\right]\)

\(=2\left[\left(x-2\right)^2-8\right]\)

\(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2-8\ge-8\)

\(\Rightarrow2\left[\left(x-2\right)^2-8\right]\ge-16\)

Do đó GTNN của A là -16 khi \(x-2=0\Rightarrow x=2\)

Le Thi Khanh Huyen
3 tháng 7 2016 lúc 17:29

\(B=x^2-8x+5=x^2-8x+16-9\)

\(=x^2-2\left(4x\right)+4^2-9\)

\(=\left(x-4\right)^2-9\)

\(\left(x-4\right)^2\ge0\)

\(\Rightarrow\left(x-4\right)^2-9\ge-9\)

Do đó GTNN của B là -9 khi \(x-4=0\Rightarrow x=4\)

Hùng Hoàng
Xem chi tiết
HT.Phong (9A5)
25 tháng 10 2023 lúc 18:38

A) \(A=-3x^2+x+1\)

\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)

Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)

Dấu "=" xảy ra khi:

\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)

Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)

B) \(B=2x^2-8x+1\)

\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(B=2\left(x-2\right)^2-7\)

Mà: \(2\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu "=" xảy ra khi:

\(x-2=0\Rightarrow x=2\)

Vậy: \(B_{min}=2.khi.x=2\)

Hùng Hoàng
25 tháng 10 2023 lúc 18:45

câu a) bạn viết sai đề rồi

 

Nguyen huong tra
Xem chi tiết
Hoàng Phúc
28 tháng 5 2016 lúc 20:52

a) Ta có: \(A=x^2-2x+5=\left(x^2-2x+1\right)+4\)

\(A=\left[x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right]+4\)

\(A=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}+4=\left(x-\frac{1}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)

=>AMin=17/4

Dấu "=" xảy ra <=> x=1/2

Hoàng Phúc
28 tháng 5 2016 lúc 20:56

b,\(E=-x^2+2x-3=-\left(x^2-2x+3\right)\)

Đặt \(M=x^2-2x+3\).dễ thấy E=-M

ta có: \(M=\left(x^2-2x+1\right)+2=\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)+2=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}+2\)

\(M=\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Mà E=-M

=>\(E\le\frac{11}{4}\)

=>EMax=11/4

Dấu "=" xảy ra <=>x=1/2

Hoàng Phúc
28 tháng 5 2016 lúc 21:08

c,\(B=\frac{-7}{x^2+2x+6}\)

Biến đổi mẫu của B:\(x^2+2x+6=\left(x^2+2x+1\right)+5=\left(x+1\right)^2+5\)

Khi đó B trở thành : \(\frac{-7}{\left(x+1\right)^2+5}\)

\(\left(x+1\right)^2+5>0,-7< 0\) nên B chỉ có thể đạt GTLN

Ta có: B lớn nhất <=> (x+1)2+5 nhỏ nhất

\(\left(x+1\right)^2+5\ge5\)

=>\(B\le-\frac{7}{5}\)

=>GTLN của B là -7/5

Dấu "=" xảy ra <=> x=-1

hồ ly
Xem chi tiết
Phạm Khang
12 tháng 1 2023 lúc 21:58

P=(-x^2+8x-7)/(2x+2)

P-1=-(x^2-8x+7+x^2+1)/2(x+1)

P-1=-(2x^2-8x+8)/2(x+1)

P-1=-2(x^2-4x+4)/2(x+1)

P-1=-2(x-2)^2/2(x+1)

Vì -2(x-2)^2/2(x+1) ≥0

=> P-1≥0

=>P≥1

Dấu = xảy ra khi x-2=0 =>x=2

Vậy Pmin = 3 khi x = 2

tram nguyen
Xem chi tiết
Nguyễn Văn Tuấn Anh
26 tháng 7 2019 lúc 21:31

\(A=5-8x-x^2\) 

\(=-\left(x^2+8x+16\right)+21\) 

\(=-\left(x+4\right)^2+21\le21\forall x\) 

Dấu "=" xảy ra<=> \(-\left(x+4\right)^2=0\Leftrightarrow x=-4\) 

Vậy....

Darlingg🥝
26 tháng 7 2019 lúc 21:39

Ta có

=-(x2+ 8x +16) +21

= - (x + 4 ) 2 + 21 < 21x

= - ( x+ 4) 2 = 0<=> = -4

~Study well~ :)

\(A=5-8x-x^2\)

\(=-\left(x2+8x+16\right)+21\)

\(=-\left(x+4\right)^2+21< 21x\)

\(=-\left(x+4\right)^2=0\Leftrightarrow-4\)

Naa Hi
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 9 2021 lúc 18:59

1) \(A=x^2+8x+15=\left(x^2+8x+16\right)-1=\left(x+4\right)^2-1\ge-1\)

\(minA=-1\Leftrightarrow x=-4\)

2) \(B=7x-x^2-5=-\left(x^2-7x+\dfrac{49}{4}\right)+\dfrac{29}{4}=-\left(x-\dfrac{7}{2}\right)^2+\dfrac{29}{4}\le\dfrac{29}{4}\)

\(maxB=\dfrac{29}{4}\Leftrightarrow x=\dfrac{7}{2}\)

Nguyễn Lê Phước Thịnh
2 tháng 9 2021 lúc 19:09

Ta có: \(A=x^2+8x+15\)

\(=x^2+8x+16-1\)

\(=\left(x+4\right)^2-1\ge-1\forall x\)

Dấu '=' xảy ra khi x=-4

Naa Hi
2 tháng 9 2021 lúc 19:13

Lớp 8 nhé, mình chọn nhầm

 

Nguyễn Quốc Khánh
Xem chi tiết
nguyenquocthanh
22 tháng 10 2019 lúc 20:02

toi ko bt

Khách vãng lai đã xóa
LÊ VIẾT NAM KHÁNH
16 tháng 12 2021 lúc 10:05

có ai làm NY tui hem

Khách vãng lai đã xóa
dards micheal
Xem chi tiết
Lê Thụy Sĩ
Xem chi tiết
cao van duc
10 tháng 7 2018 lúc 21:14

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

HUYNHTRONGTU
4 tháng 5 2021 lúc 15:00

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

Khách vãng lai đã xóa