giúp mình vs
giải phương trình sau
lx-2l(x-1)(x+1)(x+2)=4
Giải phương trình sau:
lx-2l(x-1)(x+1)(x+2) = 4
TH1 : \(\left|x-2\right|=x-2\)
Ta có :
\(\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=4\)
\(\Leftrightarrow x^4-5x^2=0\)
\(\Leftrightarrow x^2\left(x^2-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
TH2 : \(\left|x-2\right|=2-x\)
Ta có :
\(\left(2-x\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(4-x^2\right)\left(x^2-1\right)=4\)
\(\Leftrightarrow5x^2-x^4=8\)
\(\Leftrightarrow x^4-5x^2+8=0\) (Vô nghiệm)
Vậy...
|x-2|(x-1)(x+1)(x+2) =4;
+) TH1 : (x-2)(x-1)(x+1)(x+2) =4
<=> (x-2)(x+2)(x-1)(x+1) =4;
<=> (x²-4).(x²-1)=4;
<=> x^4-5x²=0;
=> x=√5;
x=-√5;
x=0;
+) TH2: (2-x)(x-1)(x+1)(x+2) =4
<=> (2-x)(2+x)(x-1)(x+1) =4;
<=> (4-x²).(x²-1)=4;
=> 5x²-x^4=8;
đặt x²=t;
=> -t²+5t-8=0;
vô nghiệm
vậy x=√5; x=-√5; x=0;
Giải phương trình:
\(x^4+\left(x^2+1\right)\sqrt{x^2+1}-1=0\)
Giúp em vs ạ
\(ĐKXĐ:x\in R\)
Phương trình cho tương đương :
\(\left(x^2-1\right)\left(x^2+1\right)+\left(x^2+1\right)\sqrt{x^2+1}=0\)
Đặt \(\sqrt{x^2+1}=a\left(a\ge1\right)\Rightarrow a^2-2=x^2-1\)
Khi đó pt trở thành :
\(a^2\left(a^2-2\right)+a^3=0\)
\(\Leftrightarrow a^2\left(a^2-2+a\right)=0\)
\(\Leftrightarrow a^2\left(a+2\right)\left(a-1\right)=0\)
\(\Leftrightarrow a=1\) ( do \(a\ge1\) )
\(\Rightarrow\sqrt{x^2+1}=1\Rightarrow x^2+1=1\Rightarrow x=0\) ( Thỏa mãn )
Vậy \(S=\left\{0\right\}\)
giải phương trình:
(x-1)*(x+3)+2*(x-1)*căn((x+3)/(x-1))=8
giúp mình câu này vs ak. mình đang cần gấp
ĐẶT x-1=a , x+3=b (a,b cùng dấu)
\(PT\Leftrightarrow ab+2a\sqrt{\frac{b}{a}}=8\)
\(\Leftrightarrow2a\sqrt{\frac{b}{a}}=8-ab\)
\(\Leftrightarrow4a^2\frac{b}{a}=64-16ab+a^2b^2\)
\(\Leftrightarrow a^2b^2-20ab+64=0\)
\(\Leftrightarrow\left(ab-10\right)^2-36=0\)
\(\Leftrightarrow\left(ab-4\right)\left(ab-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ab=4\\ab=16\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(x+3\right)=4\\\left(x-1\right)\left(x+3\right)=16\end{cases}}\)
Đến đây đơn giản rồi bn tự giải nhé
ĐK:....\(\frac{x+3}{x-1}\ge0\)
<=> \(\left(x-1\right)\left(x+3\right)+2\sqrt{\left(x-1\right)\left(x+3\right)}+1=9\)
<=> \(\left(\sqrt{\left(x-1\right)\left(x+3\right)}+1\right)^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{\left(x-1\right)\left(x+3\right)}=2\\\sqrt{\left(x-1\right)\left(x+3\right)}=-4\left(loai\right)\end{cases}}\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=4\)
Em tự làm tiếp nhé
giải phương trình và bất phương trình sau:
a, \(\dfrac{3}{x-1}=\dfrac{4}{x+1}\)
b,(x-1).(x-3)=0
c, 2(x-1)+x=0
mọi người giúp mình với ạ
a: =>3x+3=4x-4
=>-x=-7
hay x=7(nhận)
b: (x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
c: 2(x-1)+x=0
=>2x-2+x=0
=>3x-2=0
hay x=2/3
a, ĐKXĐ : x ≠ 1 ; x ≠ -1
\(\Rightarrow3\left(x+1\right)=4\left(x-1\right)\)
\(\Leftrightarrow3x+3=4x-4\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\left(N\right)\)
b,
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
c,
\(\Leftrightarrow2x-2+x=0\)
\(\Leftrightarrow3x=2\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
-giải phương trình
4(2x+7)-9(x+3)^2=0
- phân tích đa thức thành nhân tử bằng cách đặt ẩn phụ
(x^2+x+1)*(x^2+x+2)-12
(mọi người giải giúp mình vs ạ)
Bài 1 :
Mình nghĩ phải sửa đề ntn :
\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)
\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\7x+23=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{-23}{7}\end{cases}}}\)
Vậy....
b) \(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(q=x^2+x+1\)ta có :
\(A=q\left(q+1\right)-12\)
\(A=q^2+q-12\)
\(A=q^2+4q-3q-12\)
\(A=q\left(q+4\right)-3\left(q+4\right)\)
\(A=\left(q+4\right)\left(q-3\right)\)
Thay \(q=x^2+x+1\)ta có :
\(A=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)
\(A=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(A=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)\)
\(A=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)
\(A=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)
Cách 2 của câu 2:
Đặt \(x^2+x+2=t\)
Ta có: \(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(=t\left(t-1\right)-12=t^2-t-12\)
\(=\left(t-4\right)\left(t+3\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)
giúp mình bài này vs . 1, giải phương trình \(5x+2\sqrt{x+1}+\sqrt{1-x}+\sqrt{1-x}=-3\)
Giải các phương trình sau:
a) 2x4+3x3-16x2+3x-2=0
b) 2016(2017-2016x2)=2017-x
d) lx2-1l= -lxl+1
e) lx-2l(x-4)(x+10(x+2)=4
g) (x2+x+1)2=3(x4+x2+1)
h) (2x+1)(x+1)2(2x+3)=18
Giúp mình với !!! Ai nhanh nhất mình tích cho
phương trình \(x^2-3x+1=\frac{-\sqrt{3}}{3}\sqrt{x^4+x^2+1}\) hộ mình vs ạ
giải hộ mình vs
Đúng làm trẻ trâu , ăn nói mất lịch sự