\(ĐKXĐ:x\in R\)
Phương trình cho tương đương :
\(\left(x^2-1\right)\left(x^2+1\right)+\left(x^2+1\right)\sqrt{x^2+1}=0\)
Đặt \(\sqrt{x^2+1}=a\left(a\ge1\right)\Rightarrow a^2-2=x^2-1\)
Khi đó pt trở thành :
\(a^2\left(a^2-2\right)+a^3=0\)
\(\Leftrightarrow a^2\left(a^2-2+a\right)=0\)
\(\Leftrightarrow a^2\left(a+2\right)\left(a-1\right)=0\)
\(\Leftrightarrow a=1\) ( do \(a\ge1\) )
\(\Rightarrow\sqrt{x^2+1}=1\Rightarrow x^2+1=1\Rightarrow x=0\) ( Thỏa mãn )
Vậy \(S=\left\{0\right\}\)