TH1 : \(\left|x-2\right|=x-2\)
Ta có :
\(\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=4\)
\(\Leftrightarrow x^4-5x^2=0\)
\(\Leftrightarrow x^2\left(x^2-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
TH2 : \(\left|x-2\right|=2-x\)
Ta có :
\(\left(2-x\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(4-x^2\right)\left(x^2-1\right)=4\)
\(\Leftrightarrow5x^2-x^4=8\)
\(\Leftrightarrow x^4-5x^2+8=0\) (Vô nghiệm)
Vậy...
|x-2|(x-1)(x+1)(x+2) =4;
+) TH1 : (x-2)(x-1)(x+1)(x+2) =4
<=> (x-2)(x+2)(x-1)(x+1) =4;
<=> (x²-4).(x²-1)=4;
<=> x^4-5x²=0;
=> x=√5;
x=-√5;
x=0;
+) TH2: (2-x)(x-1)(x+1)(x+2) =4
<=> (2-x)(2+x)(x-1)(x+1) =4;
<=> (4-x²).(x²-1)=4;
=> 5x²-x^4=8;
đặt x²=t;
=> -t²+5t-8=0;
vô nghiệm
vậy x=√5; x=-√5; x=0;