Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Tuấn Minh
Xem chi tiết
Lê Thị Thục Hiền
24 tháng 5 2021 lúc 22:28

\(x^2+y^2+xy=3\)

Có \(x^2+y^2\ge2xy\) \(\Rightarrow3=x^2+y^2+xy\ge2xy+xy\) \(\Leftrightarrow xy\le1\)

\(x^2+y^2\ge-2xy\) \(\Rightarrow3=x^2+y^2+xy\ge-2xy+xy\) \(\Leftrightarrow-3\le xy\) 

Đặt A= \(x^2+y^2-xy=\left(3-xy\right)-xy=3-2xy\)

mà \(-3\le xy\le1\) \(\Rightarrow9\ge3-2xy\ge1\)

=> minA=1 <=> \(\left\{{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\) <=>x=y=1

maxA=9 <=>\(\left\{{}\begin{matrix}xy=-3\\x=-y\end{matrix}\right.\) <=>\(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

Nguyễn Việt Lâm
24 tháng 5 2021 lúc 22:29

Đặt \(P=x^2+y^2-xy\)

\(\Rightarrow\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}\)

\(\dfrac{P}{3}=\dfrac{3x^2+3y^2-3xy}{3\left(x^2+y^2+xy\right)}=\dfrac{x^2+y^2+xy+2\left(x^2+y^2-2xy\right)}{3\left(x^2+y^2+xy\right)}\)

\(\dfrac{P}{3}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\Rightarrow P\ge1\)

\(P_{min}=1\) khi \(x=y=1\)

\(\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)

\(\Rightarrow P\le9\)

\(P_{max}=9\) khi \(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 3 2018 lúc 16:09

Ta có:  2 x 2 + 1 2 ≥ 2 x ;  2 y 2 + 1 2 ≥ 2 y và  x 2 + y 2 ≥ 2 x y

Cộng vế với vế các BĐT trên ta được:

3 x 2 + y 2 + 1 ≥ 2 x + y + x y = 5 2

=> A =  x 2 + y 2 ≥ 1 2

Từ đó tìm được  A m i n = 1 2 <=> x = y =  1 2

Hoang Yen Pham
Xem chi tiết
HT2k02
19 tháng 7 2021 lúc 19:21

a) Áp dụng bất đẳng thức Cosi ta có :

\(x^2+1\geq 2x\\ 4y^2+1\geq 4y\\ 9z^2+1\geq 6z\)

Suy ra \(S\leq 6\)

Dấu = xảy ra khi \(x=1;y=\frac{1}{2}; z=\frac{1}{3}\)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 8 2017 lúc 3:19

Chọn đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 6 2018 lúc 15:58

b) Ta có: P = x2 + y2 – 2x + 6y+ 12

P = (x2 – 2x + 1) + (y2 + 6y + 9) + 2

P = (x – 1)2 + (y + 3)2 + 2 ≥ 2 vì (x – 1)2 ≥ 0; (y + 3)2 ≥ 0, với mọi x, y

Vậy giá trị nhỏ nhất của P bằng 2

Dấu “=” xảy ra khi x – 1 = 0 và y + 3 = 0 ⇒ x = 1 và y = -3

my nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 11 2021 lúc 23:12

\(P=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=-3

vvvvvvvv
Xem chi tiết
Đậu Hũ Kho
18 tháng 4 2021 lúc 15:58

Áp dụng BĐT cói cho 2 số ko âm ta có 

X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12 

Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y 

( thông cảm mình gõ mũ ko đc ) 

Nguyễn Ngọc Ánh
Xem chi tiết
HaNa
20 tháng 8 2023 lúc 13:23

a.

\(A=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)

GTNN của A đạt 2 khi và chỉ khi \(x=2\)

b.

\(B=y^2-2.\dfrac{1}{2}y+\dfrac{1}{4}+\dfrac{3}{4}=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

GTNN của B đạt \(\dfrac{3}{4}\) khi và chỉ khi \(y=\dfrac{1}{2}\)

c.

\(C=x^2-4x+4+y^2-2.\dfrac{1}{2}y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

GTNN của C đạt \(\dfrac{3}{4}\) khi và chỉ khi \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

HT.Phong (9A5)
20 tháng 8 2023 lúc 13:26

a) \(A=x^2-4x+6\)

\(A=x^2-4x+4+2\)

\(A=\left(x-2\right)^2+2\)

Mà: \(\left(x-2\right)^2\ge0\forall x\) nên \(A=\left(x-2\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra:

\(\left(x-2\right)^2+2=2\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy: \(A_{min}=2\) khi \(x=2\)

b) \(B=y^2-y+1\)

\(B=y^2-2\cdot\dfrac{1}{2}\cdot y+\dfrac{1}{4}+\dfrac{3}{4}\)

\(B=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(y-\dfrac{1}{2}\right)^2\ge\forall x\) nên \(B=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu "=" xảy ra:

\(\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow y-\dfrac{1}{2}=0\)

\(\Leftrightarrow y=\dfrac{1}{2}\)

Vậy \(B_{min}=\dfrac{3}{4}\) khi \(y=\dfrac{1}{2}\)

c) \(C=x^2-4x+y^2-y+5\)

\(C=x^2-4x+4+y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\)

\(C=\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\forall x\\\left(y-\dfrac{1}{2}\right)^2\ge0\forall x\end{matrix}\right.\) nên 

\(C=\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu "=" xảy ra:

\(\left\{{}\begin{matrix}x-2=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(C_{min}=\dfrac{3}{4}\) khi \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

thao nguyen phuong
Xem chi tiết
Nguyễn phạm bảo lâm
Xem chi tiết