cho ΔABC vuông tại A có đường cao AH. Chứng minh:
a) AB2 = BC . BH; AC2 = BC . CH. Từ đó cm định lí pytago
b) AH2 = BH . CH
c) \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
d) AH . BC = AB . AC
Bài 1. Cho ΔABC vuông góc tại A, đường cao AH (H ∈ BC) và phân giác BE của ABC (E ∈ AC) cắt nhau tại I . Chứng minh rằng:
a) ΔABE ΔHBI.
b) ΔBHA ΔBAC. Rồi suy ra AB2 = BH. BC
c) ΔAIE cân.
freqché tonery élooin shçç
arzàyu radio rubsz tqsd
çàèé sonuhy,lafneq toin
çàea & reszao and shoppea
reach 123 tusqi yuoyuè
(reachèst)
cho tam giác ABC vuông ở A , có AB=6cm, AC=8cm. vẽ đường cao AH a, tính BC b, chứng minh ΔABC đồng dạng với ΔAHB c, chứng minh AB2=BH.BC. Tính BH, HC d, vẽ phân giác AD (D ϵ BC) tính DB
Cho tam giác ΔABC vuông tại A có AB=6cm,AC=10cm . Đường cao AH a)Chứng minh ΔABC / ΔABH b)Chứng minh AB²=BH.BC c)Tính BC,AH,BH
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
a.Xét tam giác ABC và tam giác HBA, có:
^B: chung
^BAC = ^BHA = 90 độ
Vậy tam giác ABC đồng dạng tam giác HBA (g.g)
b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)
c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)
(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)
\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)
Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)
cho tam giác ABC vuông ở A , có AB=6cm, AC=8cm. vẽ đường cao AH a, tính BC b, chứng minh ΔABC đồng dạng với ΔAHB c, chứng minh AB2=BH.BC. Tính BH, HC d, vẽ phân giác AD của góc A(D ϵ BC) tính DB
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
c: ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
BH=AB^2/BC=6^2/10=3,6cm
CH=10-3,6=6,4cm
d: AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=10/7
=>DB=30/7cm
Cho ΔABC, đường cao AH
Chứng minh:
a)ΔABCᔕΔHBA, AB2=BH*BC
b)AC2=CH*BC
c)AH2=BH*CH
d)\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
e)Biết M ∈ tia đối tia AC, AM<AC
AE⊥BM tại E
Chứng minh góc BEH=góc BAH
Cho ΔABC vuông tại A, AB < AC. Phân giác BI. Đường cao AH. Trên BC lấy K sao cho BA = BK.
1. Chứng minh:
a) AI = IK
b) AH // IK
c) BI là trung trực AK
d) AK là phân giác góc HAC
2. Gọi AH giao BI tại N. Chứng minh:
a) Góc ANI = Góc AIN
b) NA = NK
c) NK ⊥ AB
3. Lấy E thuộc tia đối tia HA sao cho HA = HE. Chứng minh rằng: CB là phân giác góc ECA.
4. Kẻ KI giao AB tại D. Gọi V là trung điểm CD. Chứng minh:
a) ID = IC
b) B, I, V thẳng hàng
c) CD // AK
5. Kẻ IK giao CE tại M. Chứng minh:
a) CM = CI
b) CB là trung trực IM
1:
a: Xét ΔBAI và ΔBKI có
BA=BK
\(\widehat{ABI}=\widehat{KBI}\)
BI chung
Do đó: ΔBAI=ΔBKI
=>IA=IK
b: ΔBAI=ΔBKI
=>\(\widehat{BAI}=\widehat{BKI}=90^0\)
=>IK\(\perp\)BC
mà AH\(\perp\)BC
nên AH//KI
c: BA=BK
=>B nằm trên đường trung trực của AK(1)
IA=IK
=>I nằm trên đường trung trực của AK(2)
Từ (1) và (2) suy ra BI là đường trung trực của AK
d: BA=BK
=>ΔBAK cân tại B
=>\(\widehat{BAK}=\widehat{BKA}\)
\(\widehat{BAK}+\widehat{CAK}=\widehat{BAC}=90^0\)
\(\widehat{BKA}+\widehat{HAK}=90^0\)(ΔKAH vuông tại H)
mà \(\widehat{BAK}=\widehat{BKA}\)
nên \(\widehat{CAK}=\widehat{HAK}\)
=>AK là phân giác của góc HAC
2:
a: Ta có: \(\widehat{ANI}=\widehat{BNH}\)(hai góc đối đỉnh)
\(\widehat{BNH}+\widehat{HBN}=90^0\)(ΔHNB vuông tại H)
Do đó: \(\widehat{ANI}+\widehat{HBN}=90^0\)
mà \(\widehat{HBN}=\widehat{ABI}\)
nên \(\widehat{ANI}+\widehat{ABI}=90^0\)
mà \(\widehat{ABI}+\widehat{AIN}=90^0\)(ΔABI vuông tại A)
nên \(\widehat{ANI}=\widehat{AIN}\)
b: Xét ΔBAN và ΔBKN có
BA=BK
\(\widehat{ABN}=\widehat{KBN}\)
BN chung
Do đó; ΔBAN=ΔBKN
=>NA=NK
c: BI là trung trực của AK
=>BI\(\perp\)AK
Xét ΔBAK có
BI,AH là đường cao
BI cắt AH tại N
Do đó: N là trực tâm của ΔBAK
=>KN\(\perp\)AB
3:
Xét ΔCAE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAE cân tại C
=>CA=CE
ΔCAE cân tại C
mà CB là đường cao
nên CB là phân giác của \(\widehat{ACE}\)
Cho ΔABC vuông tại A có AB = 6cm, BC = 10cm và đường cao AH
a) Chứng minh: ΔABH ᔕ ΔCBA và AB2 = BH.BC
b) Tính AC, AH
c) Tia phân giác của \(\widehat{ABC}\) cắt AH, AC lần lượt tại I và D. Chứng minh: \(\dfrac{IH}{IA}\) = \(\dfrac{DA}{DC}\)
d) Tính SABI
cho ΔABC vuông tại A, có đường cao AH. Gọi K là trung điểm AH. Từ H hạ vuông góc với AB và AC tại D và E. Đường tròn (K;AK) cắt đường tròn (O) đường kính BC tại I, AI cắt BC tại M. Chứng minh:
a) 5 điểm A,I,D,H,E thẳng hàng
b) MK ⊥ AO
c) 4 điểm M,D,K,E thẳng hàng
d) MD.ME=MH2
cho tam giác ABC vuông tại A đường cao AH. chứng minh: a/ tam giác HBA đồng dạng với tam giác AHC. b/ AB2= BH. BC
Cho tam giác ABC vuông tại A, có đường cao AH. Biết AB= 6cm, AC= 8cm
a) Chứng minh tam giác HBA đồng dạn với tam giác ABC
b) Tính độ dài BC và AH
c) Chứng minh AB2= BC+BH
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Ta có: ΔHBA\(\sim\)ΔABC(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{AB}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AH}{8}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\Leftrightarrow AH=\dfrac{3\cdot8}{5}=\dfrac{24}{5}=4,8\left(cm\right)\)
Vậy: AH=4,8cm