Rút gon biểu thức sau:
\(\left(x^2-2\right)^2-\left(2x^5-8x^3+4x\right):2x\)
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Rút gon biểu thức sau
a) \(\left(x-5\right)\left(2x+3\right)+2x\left(1-x\right)\)
b) \(\left(3x-5\right)^2-\left(x+5\right)\left(5-x\right)-\frac{5}{2}\left(-2x\right)^2\)
c) \(\left(3x+2\right)\left(4-6x+9x^2\right)-3x\left(3x-2\right)^2+12\left(-\frac{2}{3}-3x^2\right)\)
a) ( x - 5 )( 2x + 3 ) + 2x( 1 - x )
= 2x2 - 7x - 15 + 2x - 2x2
= -5x - 15
= -5( x + 3 )
b) ( 3x - 5 )2 - ( x + 5 )( 5 - x ) - 5/2( -2x )2
= 9x2 - 30x + 25 + ( x + 5 )( x - 5 ) - 5/2.4x2
= 9x2 - 30x + 25 + x2 - 25 - 10x2
= -30x
c) ( 3x + 2 )( 4 - 6x + 9x2 ) - 3x( 3x - 2 )2 + 12( -2/3 - 3x2 )
= ( 3x )3 + 23 - 3x( 9x2 - 12x + 4 ) - 8 - 36x2
= 27x3 + 8 - 27x3 + 36x2 - 12x - 8 - 36x2
= -12x
a, \(\left(x-5\right)\left(2x+3\right)+2x\left(1-x\right)=2x^2+3x-10x-15+2x-2x^2=-5x-15\)
b, \(\left(3x-5\right)^2-\left(x+5\right)\left(5-x\right)-\frac{5}{2}\left(-2x\right)^2\)
\(=9x^2-30x+25-\left(5x-x^2+25-5x\right)-\frac{5}{2}\left(4x^2\right)\)
\(=-30x\)
BT2: Tính giá trị biểu thức
\(M=\left(7-2x\right)\left(4x^2+14x+49\right)-\left(64-8x^3\right)\)tại \(x=1\)
\(P=\left(2x-1\right)\left(4x^2-2x+1\right)-\left(1-2x\right)\left(1+2x+4x^2\right)\)tại \(x=10\)
\(M=\left(7-2x\right)\left(4x^2+14x+49\right)-\left(64-8x^3\right)\)
\(M=\left(7-2x\right)\left[\left(2x\right)^2+2x\cdot7+7^2\right]-\left(64-8x^3\right)\)
\(M=\left[7^3-\left(2x\right)^3\right]-\left(64-8x^3\right)\)
\(M=343-8x^3-64+8x^3\)
\(M=279\)
Vậy M có giá trị 279 với mọi x
\(P=\left(2x-1\right)\left(4x^2-2x+1\right)-\left(1-2x\right)\left(1+2x+4x^2\right)\)
\(P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3\)
\(P=16x^3-8x^2+4x-2\)
Thay \(x=10\) vào P ta có:
\(P=16\cdot10^3-8\cdot10^2+4\cdot10-2=15238\)
Vậy P có giá trị 15238 tại x=10
a: M=343-8x^3-64+8x^3=279
b: P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3
=16x^3-8x^2+4x-2
=16*10^3-8*10^2+4*10-2=15238
Tìm tập xác định của biểu thức, rút gọn biểu thức, rồi tính giá trị của biểu thức với x = \(\dfrac{1}{3}\) , y = -2:
[\(\dfrac{2x}{2x-3y}\) - \(\dfrac{9y^2\left(3y+4x\right)}{8x^3-37y^3}\) - \(\dfrac{24xy}{4x^2+6xy+9y^2}\)][2x + \(\dfrac{3y\left(3y+4x\right)}{2x-3y}\)]
Đặt bthuc = A nhé
ĐKXĐ : \(2x\ne3y\)
\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)
\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)
\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)
Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3
Bài `1`: Rút gọn các biểu thức sau:
\(a)4x^2\left(5x^2+3\right)-6x\left(3x^3-2x+1\right)-5x^3\left(2x-1\right)\)
\(b)\dfrac{3}{2}x\left(x^2-\dfrac{2}{3}x+2\right)-\dfrac{5}{3}x^2\left(x+\dfrac{6}{5}\right)\)
Bài `2`: Thực hiện các phép nhân sau:
\(a)\left(x^2-x\right)\cdot\left(2x^2-x-10\right)\)
\(b)\left(0,2x^2-3x\right)\cdot5\left(x^2-7x+3\right)\)
\(c)6x^2\cdot\left(2x^3-3x^2+5x-4\right)\)
\(d)\left(-1,2x^2\right)\cdot\left(2,5x^4-2x^3+x^2-1,5\right)\)
Bài 2:
a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)
b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)
\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)
\(=x^4-22x^3+108x^2-45x\)
c: \(=12x^5-18x^4+30x^3-24x^2\)
d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)
Chứng minh các biểu thức sau không phụ thuộc vào biến x:
a/ \(2x^2\left(4x+1\right)-8x^2\left(x+1\right)-\left(2x\right)^3-2x+3\)
b/ \(x\left(3x+12\right)-\left(7x-20\right)+x^2\left(2x-3\right)-x\left(2x^2+5\right)\)
a/ \(=8x^3+2x^2-8x^3-8x^2-8x^3-2x+3=-8x^3-6x^2-2x+3\)
b/ \(=3x^2+12x-7x+20+2x^3-3x^2-2x^3-5x=20\)
Biểu thức A phụ thuộc vào x còn B thì không.
Rút gọn các biểu thức sau
a, \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
a: \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
\(=x^3-16x^2+25x\)
Rút gọn các biểu thức sau:
a)
\(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(=x\left[2\left(2x-1\right)^2-3\left(x^2-9\right)-4\left(x+1\right)^2\right]\)
\(=x\left(8x^2-8x+1-3x^2+27-4x^2-8x-4\right)\)
\(=x\left(x^2-16x+28\right)=x\left(x-2\right)\left(x-14\right)\)
\(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
\(=x^3-16x^2+25x\)
Rút gọn biểu thức:
\(\left(x+3\right)^2+\left(2x+1\right)\left(3x-5\right)-2x\left(3-x\right)+4x+25\)