Rút gọn phân thức
a) \(\frac{12x^5y^2}{8x^3y^5}\)
b) \(\frac{x^2+2x+1}{5x^2+5x}\)
Rút gọn phân thức
a) \(\frac{12x^5y^2}{8x^3y^5}\)
b) \(\frac{x^2+2x+1}{5x^2+5x}\)
a)\(\frac{12x^5y^2}{8x^3y^5}\)
=\(\frac{3x^2}{2y^3}\)
b)\(\frac{x^2+2x+1}{5x^2+5x}\)
=\(\frac{\left(x+1\right)^2}{5x\left(x+1\right)}\)
=\(\frac{x+1}{5x}\)
t tôi nhé bn
\(a,\frac{12x^5y^2}{8x^3y^5}=\frac{4x^3y^2.3x^2}{4x^3y^2.2y^3}=\frac{3x^2}{2y^3}\)
\(b,\frac{x^2+2x+1}{5x^2+5x}=\frac{\left(x+1\right)^2}{5x\left(x+1\right)}=\frac{\left(x+1\right)\left(x+1\right)}{5x\left(x+1\right)}=\frac{x+1}{5x}\)
Xong rồi nhé! Chúc bạn học giỏi.
Rút gọn phân thức
a) \(\frac{12x^5y^2}{8x^3y^5}\)
b) \(\frac{x^2+2x+1}{5x^2+5x}\)
a, \(\frac{12x^5y^2}{8x^3y^5}=\frac{3x^2}{2y^3}\)
b, \(\frac{x^2+2x+1}{5x^2+5x}=\frac{\left(x+1\right)^2}{5x\left(x+1\right)}=\frac{x+1}{5x}\)
a)\(\frac{12x^5y^2}{8x^3y^5}=\frac{4\cdot3\cdot x^3x^2y^2}{4\cdot2\cdot x^3y^2y^3}=\frac{3x}{2y^3}\)
b)\(\frac{x^2+2x+1}{5x^2+5x}=\frac{x^2+2\cdot x\cdot1+1^2}{5x\left(x+1\right)}=\frac{\left(x+1\right)^2}{5x\left(x+1\right)}=\frac{x+1}{5x}\)
1.tìm điều kiện xác định của các bt sau
a,5x^2y/x+4 b,3x-2y/2x-1 c,5x^2/x(y-3) d,4x^3y/x^2-4y^2 e,2x+1/(5-x)(y+2)
2.rút gọn các phân thức
a,-12x^3y^2/-20x^2y^2 b,x^2+xy-x-y/x^2-xy-x+y c,7x^2-7xy/y^2-x^2 d,7x^2+14x+7/3x^2+3x e,3y-2-3xy+2x/1-3x-x^3+3x^2
f,x^10-x^8+x^6-x^4+x^2+1/x^4-1 g,x^2+7x+12/x^2+5x+6
Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)
Cho các số x,y,z khác thỏa mãn $\frac{2x-3y}{5}$ =$\frac{5y-2z}{3}$ =$\frac{3z-5x}{2}$
Tính giá trị biểu thức B=$\frac{12x+5y-3z}{x-3y+2z}$
Rút gọn: M = \(\frac{5x^5+4x^4+3x^3+2}{4x^4+3x^3+2x^2+z}+\frac{4y^4+3y^3+2y^2+y}{5y^5+4y^4+3y^3+2}+\frac{5y^5+4z^4+3z^3+2}{4z^4+3z^3+2z^2+z}\)
Rút gọn
\(A:5\sqrt{x}-4y\sqrt{25x^3}+5x\sqrt{16xy^2}-2\sqrt{9x}\)
\(B:5x\sqrt{64xy^3}-\sqrt{3}\sqrt{12x^3y^3}+2xy\sqrt{9xy}-5y\sqrt{81x^3y}\)
\(C:\sqrt{\frac{x}{y}}+\sqrt{xy}+\frac{x}{y}\sqrt{\frac{y}{x}}\)
Rút gọn các phân thức sau.
a, 12x^2 + 4x / 9x^2 -1
b ,8x^2 - 8x + 2 / 4x -2(15- x)
c, 5x^3 + 5x / x^4 -2
d, x^2 -6x/ 2x^2 - 72
a: \(=\dfrac{4x\left(3x+1\right)}{\left(3x+1\right)\left(3x-1\right)}=\dfrac{4x}{3x-1}\)
b: \(=\dfrac{2\left(4x^2-4x+1\right)}{4x-30+2x}=\dfrac{4\left(2x-1\right)^2}{6x-30}=\dfrac{2\left(2x-1\right)^2}{3\left(x-5\right)}\)
d: \(=\dfrac{x\left(x-6\right)}{2\left(x-6\right)\left(x+6\right)}=\dfrac{x}{2x+12}\)
Bài 1: rút gọn phân thức
a) \(\frac{14xy^2\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}\)
b) \(\frac{8xy\left(3x-1\right)^2}{12x^3\left(1-3x\right)}\)
c) \(\frac{20x^2-45}{\left(2x+3\right)^2}\)
d) \(\frac{5x^2-10xy}{2\left(2y-x\right)^3}\)
e) \(\frac{80x^3-125x}{3\left(x-3\right)-\left(x-3\right)\left(8-4x\right)}\)
f) \(\frac{9-\left(x+5\right)^2}{x^2+4x+4}\)
g) \(\frac{32x-8x^2+2x^3}{x^3+64}\)
h) \(\frac{5x^3+5x}{x^4-1}\)
Bài 2: Quy đồng mẫu thức của các phân thức sau
a) \(\frac{7x-1}{2x^2+6x};\frac{5-3x}{x^2-9}\)
b) \(\frac{x+1}{x-x^2};\frac{x+2}{2-4x+2x^2}\)
c) \(\frac{4x^2-3x+5}{x^3-1};\frac{2x}{x^2+x+1};\frac{6}{x-1}\)
d) \(\frac{7}{5x};\frac{4}{x-2y};\frac{x-y}{8y^2-2x^2}\)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
1)4x^5y^2-8x^4y^2+4x^3y^2 2)5x^4y^2-10x^3y^2+5x^2y^2 3)12x^2-12xy+3y^2 4)8x^3-8x^2y+2xy^2 5)20x^4y^2-20x^3y^3+5x^2y^4
1) \(4x^5y^2-8x^4y^2+4x^3y^2\)
\(=4x^3y^2\left(x^2-2x+1\right)\)
\(=4x^3y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)
\(=4x^3y^2\left(x-1\right)^2\)
2) \(5x^4y^2-10x^3y^2+5x^2y^2\)
\(=5x^2y^2\left(x^2-2x+1\right)\)
\(=5x^2y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)
\(=5x^2y^2\left(x-1\right)^2\)
3) \(12x^2-12xy+3y^2\)
\(=3\left(4x^2-4xy+y^2\right)\)
\(=3\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=3\left(2x-y\right)^2\)
4) \(8x^3-8x^2y+2xy^2\)
\(=2x\left(4x^2-4xy+y^2\right)\)
\(=2x\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=2x\left(2x-y\right)^2\)
5) \(20x^4y^2-20x^3y^3+5x^2y^4\)
\(=5x^2y^2\left(4x^2-4xy+y^2\right)\)
\(=5x^2y^2\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=5x^2y^2\left(2x-y\right)^2\)
1: 4x^5y^2-8x^4y^2+4x^3y^2
=4x^3y^2(x^2-2x+1)
=4x^3y^2(x-1)^2
2: \(=5x^2y^2\left(x^2-2x+1\right)=5x^2y^2\left(x-1\right)^2\)
3: \(=3\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)^2\)
4: \(=2x\left(4x^2-4xy+y^2\right)=2x\left(2x-y\right)^2\)
5: \(=5x^2y^2\left(4x^2-4xy+y^2\right)=5x^2y^2\left(2x-y\right)^2\)