(2+\sqrt(3))/(2-\sqrt(3))
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Thu gọn
a) A=\(\left(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\right)\left(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\right)\)
b) B=\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2-\sqrt{3}}}\)
c) C=\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
a, Ta có : \(\left\{{}\begin{matrix}\sqrt{3+2\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\\\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\end{matrix}\right.\)
- Thay lần lượt vào A ta được :
\(A=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left(\sqrt{2}-1+\sqrt{2}+1\right)=2.2\sqrt{2}=4\sqrt{2}\)
b, \(B=\sqrt{2+\sqrt{3}}\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}=\sqrt{2+\sqrt{3}}\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{2-\sqrt{3}}\sqrt{2+\sqrt{3}}=\sqrt{4-3}=\sqrt{1}=1\)
c, \(C=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)+\left(2-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)
\(=\dfrac{2\sqrt{2}+\sqrt{6}-2\sqrt{2-\sqrt{3}}-\sqrt{3}\sqrt{2-\sqrt{3}}+2\sqrt{2}-\sqrt{6}+2\sqrt{2+\sqrt{3}}-\sqrt{3}\sqrt{2+\sqrt{3}}}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)
\(=\dfrac{4\sqrt{2}-2\sqrt{3}\sqrt{2-\sqrt{3}}}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)
a) Ta có: \(A=\left(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\right)\left(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\right)\)
\(=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left(\sqrt{2}-1+\sqrt{2}+1\right)\)
\(=2\cdot2\sqrt{2}=4\sqrt{2}\)
1. Tính
a) \(\sqrt[3]{(\sqrt{2}+3)(11+6\sqrt{2})}\sqrt[3]{(\sqrt{2}+-3)(11-6\sqrt{2})}\)
b) (\((\sqrt[3]{9}+\sqrt[3]{6}+\sqrt[3]{4})(\sqrt[3]{3}-\sqrt[3]{2})\)
c)\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
Rút gọn\(\dfrac{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}{\sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}}+\dfrac{\sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}}{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}\)
Lời giải:
Đặt \(\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}=a; \sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}=b\)
Có:
\(a^2+b^2=(2+\sqrt{3}+\sqrt{2-\sqrt{3}})+(2+\sqrt{3}-\sqrt{2-\sqrt{3}})=2(2+\sqrt{3})\)
\(=4+2\sqrt{3}=3+1+2\sqrt{3.1}=(\sqrt{3}+1)^2\)
\(ab=\sqrt{(2+\sqrt{3}+\sqrt{2-\sqrt{3}})(2+\sqrt{3}-\sqrt{2-\sqrt{3}})}\)
\(=\sqrt{(2+\sqrt{3})^2-(2-\sqrt{3})}=\sqrt{5+5\sqrt{3}}\)
Như vậy:
\(\frac{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}{\sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}}+\frac{\sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}}{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}=\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\)
\(=\frac{(\sqrt{3}+1)^2}{\sqrt{5+5\sqrt{3}}}=\frac{(\sqrt{3}+1)^2}{\sqrt{5}.\sqrt{\sqrt{3}+1}}=\frac{(\sqrt{3}+1)^{1.5}}{\sqrt{5}}\)
Tính: \(H=\frac{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}-\frac{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}\)
\(H=\frac{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}-\frac{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}\)
\(H=\frac{\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2}{\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)}\)\(-\frac{\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2}{\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)}\)(cái này cùng dòng với cái phía trên)
\(H=\frac{\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2-\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2}{\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)}\)
\(H=\frac{\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2-\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2}{2\sqrt{3}}\)
\(H=\frac{-4}{2\sqrt{3}}\)
\(H=\frac{-2}{\sqrt{3}}\)
\(H=-\frac{2\sqrt{3}}{3}\)
Đặt \(A=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(A^2=2+\sqrt{3}+2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\)
\(A^2=4+2\sqrt{4+2\sqrt{3}-2\sqrt{3}-3}\)
\(A^2=4+2=6\)
\(A=\sqrt{6}\)
Đặt \(B=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
\(B^2=2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\)
\(B^2=4-2\sqrt{4+2\sqrt{3}-2\sqrt{3}-3}\)
\(B^2=4-2\sqrt{1}=4-2=2\)
\(B=\sqrt{2}\)
Thay vào H
\(\Rightarrow H=\frac{\sqrt{2}}{\sqrt{6}}-\frac{\sqrt{6}}{\sqrt{2}}=\frac{1}{\sqrt{3}}-\sqrt{3}=\frac{1-3}{\sqrt{3}}=\frac{-2}{\sqrt{3}}\)
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(\sqrt{2+\sqrt{2}}.\sqrt{3+\sqrt{7+\sqrt{2}}}.\sqrt{3+\sqrt{6+\sqrt{7+\sqrt{2}}}}.\sqrt{3-\sqrt{6+\sqrt{7+\sqrt{2}}}}\)
a: \(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=1\)
b: \(=\sqrt{2+\sqrt{2}}\cdot\sqrt{3+\sqrt{7+\sqrt{2}}}\cdot\sqrt{9-6-\sqrt{7+\sqrt{2}}}\)
\(=\sqrt{2+\sqrt{2}}\cdot\sqrt{9-7-\sqrt{2}}\)
\(=\sqrt{2}\)
Rút gọn biểu thức :
a,\(\frac{2+\sqrt{3}}{2-\sqrt{3}};\frac{5+2\sqrt{6}}{5-2\sqrt{6}}\)
b,\(\frac{\sqrt{3}-1}{\sqrt{3}+1}\)
c,\(\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}\)
d,\(\frac{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}-\frac{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}\)
a) \(\frac{2+\sqrt{3}}{2-\sqrt{3}}=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{\left(2+\sqrt{3}\right)^2}{4-3}\)
\(=\left(2+\sqrt{3}\right)^2=7+4\sqrt{3}\)
\(\frac{5+2\sqrt{6}}{5-2\sqrt{6}}=\frac{\left(5+2\sqrt{6}\right)^2}{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}=\frac{\left(5+2\sqrt{6}\right)^2}{25-24}\)
\(=\left(5+2\sqrt{6}\right)^2=49+20\sqrt{6}\)
b) \(\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{3-2\sqrt{3}+1}{3-1}\)
\(=\frac{4-2\sqrt{3}}{2}=2-\sqrt{3}\)
c) \(\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}=\frac{\left(2+\sqrt{3}\right)^2+\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=\frac{4+4\sqrt{3}+3+4-4\sqrt{3}+3}{4-3}=14\)
d) \(\frac{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}-\frac{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}\)
\(=\frac{\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2-\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2}{\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)}\)
\(=\frac{2+\sqrt{3}+2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}-\left(2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\right)}{2+\sqrt{3}-\left(2-\sqrt{3}\right)}\)
\(=\frac{4\sqrt{4-3}}{2\sqrt{3}}=\frac{4}{2\sqrt{3}}=\frac{2}{\sqrt{3}}\)
Tính:
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
Sửa đề: \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
Ta có: \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}\)
=1
Tính
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt[]{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2^2-\left(2+\sqrt{2+\sqrt{3}}\right)^2}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}=\sqrt{4-3}=1\)
\(R= \sqrt{2+\sqrt{3}}. \sqrt{2+\sqrt{2 +\sqrt{3}}}. \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(R=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\\ =\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\left(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\right)\\ =\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{\left(2+\sqrt{2+\sqrt{2+\sqrt{3}}}\right)\left(2-\sqrt{2+\sqrt{2+\sqrt{3}}}\right)}\\ =\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2^2-\left(\sqrt{2+\sqrt{2+\sqrt{3}}}\right)^2}\\ =\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-\left(2+\sqrt{2+\sqrt{3}}\right)}\\ =\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}.\left(\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\right)\\ =\sqrt{2+\sqrt{3}}.\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(2-\sqrt{2+\sqrt{3}}\right)}\\ =\sqrt{2+\sqrt{3}}.\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}\\ =\sqrt{2+\sqrt{3}}.\sqrt{4-\left(2+\sqrt{3}\right)}\\ =\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\\ =\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\\ =\sqrt{4-\sqrt{3^2}}\\ =\sqrt{4-3}\\ =\sqrt{1}\\ =1\)
THỰC HIỆN PHÉP TÍNH \(\frac{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}-\frac{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}\)
Đặt A = \(\frac{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}\)
=> \(A^2=\frac{2+\sqrt{3}+2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}}{2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}}\)\(=\frac{4+2\sqrt{4-3}}{4-2\sqrt{4-3}}=\frac{4+2}{4-2}=\frac{6}{2}=3\)
=>A = \(\sqrt{3}\)
Chứng minh tương tự B = \(\frac{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}=\frac{1}{\sqrt{3}}\)
=> A + B = \(\sqrt{3}+\frac{1}{\sqrt{3}}=\frac{4}{\sqrt{3}}\)