Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị BÍch Hậu
Xem chi tiết
Nguyễn Thị BÍch Hậu
Xem chi tiết
Phạm Thị Hiền Mai
1 tháng 1 2017 lúc 9:24

khó quá em mới lớp 6 thôi

Law Trafargal
Xem chi tiết
Nguyễn Thanh Hằng
4 tháng 10 2019 lúc 19:13

Ta có :

\(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x^2+y^2+3^2+2xy+6x+6y\right)+\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(x+y+3\right)^2+\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)

Với mọi y ta có :

\(y^2\ge0\) \(\Leftrightarrow1-y^2\le1\)

\(\Leftrightarrow-1\le x+y+3\le1\)

\(\Leftrightarrow-4\le x+y\le-2\)

\(\Leftrightarrow-6056\le M\le-2019\)

Vậy...

Nguyễn Chí Thành
Xem chi tiết
Soái muội
Xem chi tiết
nguyễn như quỳnh
Xem chi tiết
_Chris_
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2020 lúc 19:35

3) Ta có: \(A=3x^2-6x+1\)

\(=3\left(x^2-2x+\frac{1}{3}\right)\)

\(=3\left(x^2-2x+1-\frac{2}{3}\right)\)

\(=3\left(x-1\right)^2-2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow3\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow3\left(x-1\right)^2-2\ge-2\forall x\)

Dấu '=' xảy ra khi x-1=0

hay x=1

Vậy: Giá trị nhỏ nhất của biểu thức \(A=3x^2-6x+1\) là -2 khi x=1

4) Sửa đề: \(\left(a+2\right)^2-\left(a-2\right)^2\)

Ta có: \(\left(a+2\right)^2-\left(a-2\right)^2\)

\(=\left(a+2-a+2\right)\left(a+2+a-2\right)\)

\(=4\cdot2a⋮4\)(đpcm)

Khách vãng lai đã xóa
Thỏ Nghịch Ngợm
Xem chi tiết
Thịnh Gia Vân
6 tháng 1 2021 lúc 21:19

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

An Nhiên
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 8 2021 lúc 18:13

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)