Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoang Truc Mai
Xem chi tiết
Natsu Dragneel
17 tháng 10 2017 lúc 12:06

Ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=k\)

Theo đề bài, ta có :

\(xy=54\Rightarrow2k.3k=54\)

\(\Rightarrow5k=54\Rightarrow k=10,8\)

Ta thấy :

\(\dfrac{x}{2}=10,8\Rightarrow x=10,8.2=21,6\)

\(\dfrac{y}{3}=10,8\Rightarrow y=10,8.3=32,4\)

thám tử
17 tháng 10 2017 lúc 12:22

Đặt :\(\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)

\(xy=54\)

hay 2k . 3k = 54

\(\Rightarrow6.k^2=54\)

\(\Rightarrow k^2=9=\left(\pm3\right)^2\)

Với k = 3 \(\Rightarrow\) \(x=2.3=6;y=3.3=9\)

Với k = -3 \(\Rightarrow x=2.\left(-3\right)=-6;y=3.\left(-3\right)=-9\)

Võ Thành Đạt
Xem chi tiết
Nguyễn Thị Bích Thủy
21 tháng 9 2017 lúc 20:10

\(\dfrac{x}{-2}=\dfrac{y}{-3}\)\(xy=54\)
Đặt: \(\dfrac{x}{-2}=\dfrac{y}{-3}=k\)
Ta có: \(x=-2k\)
\(y=-3k\)
Thay vào biểu thức \(x.y=54\)
=> Ta có: \(-2k.\left(-3k\right)=54\)
=> \(\left(-2.-3\right).k^2\)=54
=> \(6.k^2=54\)
=> \(k^2=54:6\)
=> \(k^2=9\)
=> \(k^2=3^2\) hoặc \(k^2=\left(-3\right)^2\) (*)
=> \(k=3\) hoặc \(k=-3\)
Từ (*) => \(\dfrac{x}{-2}=\dfrac{y}{-3}=3\) hoặc \(-3\)
=> x= 3.-2=-6 ~ x= -3.-2=6
y= 3.-3=9 y=-3.-3=9
Vậy...

lqhiuu
21 tháng 9 2017 lúc 20:14

\(\dfrac{x}{-2}=\dfrac{y}{-3}=\dfrac{xy}{\left(-2\right).\left(-3\right)}=\dfrac{54}{6}=4\)

\(x=4.\left(-2\right)=-8\)

\(y=4.\left(-3\right)=-12\)

mk ko bt đk hay sai vì mk chưa hk, thấy chưa ai giải tội bn quớ thì giải thử thoy leuleu

Nguyễn Minh An
Xem chi tiết
Đặng Đình Tùng
23 tháng 8 2021 lúc 7:55

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU, TA ĐƯỢC :

`(x)/(3)=(y)/(4)=(x+y)/(3+4)=(90)/(7)`

`->` $\begin{cases}x=\dfrac{90}{7}.3=\dfrac{30}{7} \\ y=\dfrac{90}{7}.4=\dfrac{360}{7} \end{cases}$

     
Kậu...chủ...nhỏ...!!!
23 tháng 8 2021 lúc 7:46

1)\(\dfrac{x}{5}=\dfrac{y}{3}\)        áp dụng...ta đc:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{20}{2}=10\)

x=50

y=30

Đặng Đình Tùng
23 tháng 8 2021 lúc 7:54

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU, TA ĐƯỢC :

`(x)/(5)=(y)/(3)=(x-y)/(5-3)=(20)/(2)=10`

`->` $\begin{cases} x=10.5=50\\ y=10.3=30\end{cases}$

 

      
poppy Trang
Xem chi tiết
Thiên sứ của tình yêu
Xem chi tiết
Serena chuchoe
2 tháng 8 2017 lúc 13:56

a/\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{xy}{2y}=\dfrac{54}{2y}\)

\(\Rightarrow2y\cdot y=54\cdot3\Rightarrow2y^2=162\Rightarrow y^2=\dfrac{162}{2}=81\)

Mà y > 0 (gt) => \(y=\sqrt{81}=9\Rightarrow x=\dfrac{54}{9}=6\)

Vậy..............

b/ \(\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{25-9}=\dfrac{4}{16}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{1}{4}\cdot25=\dfrac{25}{4}\\y^2=\dfrac{1}{4}\cdot9=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm\sqrt{\dfrac{25}{4}}=\pm\dfrac{5}{2}\\y=\pm\sqrt{\dfrac{9}{4}}=\pm\dfrac{3}{2}\end{matrix}\right.\)

Vậy.............

c/ x/2 = y/3 => x/10 = y/15

y/5 = z/7 => y/15 = z/21

=> x/10 = y/15 = z/21

Áp dụng t/c của dãy tỉ số = nhau là ra....

Jack Kenvin
Xem chi tiết
Lê Thị Cúc
Xem chi tiết

a: \(\dfrac{xy^2}{xy-y}=\dfrac{y\cdot xy}{y\cdot\left(x-1\right)}=\dfrac{xy}{x-1}\)

=>Hai phân thức này bằng nhau

b: \(\dfrac{xy+y}{x}=\dfrac{y\left(x+1\right)}{x}\)

\(\dfrac{xy+x}{y}=\dfrac{x\left(y+1\right)}{y}\)

Vì \(\dfrac{y\left(x+1\right)}{x}\ne\dfrac{x\left(y+1\right)}{y}\)

nên hai phân thức này không bằng nhau

c: \(\dfrac{-6}{4y}=\dfrac{-6:2}{4y:2}=\dfrac{-3}{2y}\)

\(\dfrac{3y}{-2y^2}=\dfrac{-3y}{2y^2}=\dfrac{-3y}{y\cdot2y}=\dfrac{-3}{2y}\)

Do đó: \(\dfrac{-6}{4y}=\dfrac{3y}{-2y^2}\)

=>Hai phân thức này bằng nhau

Nhan Thanh
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 4 2021 lúc 21:34

Ta có: \(\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\dfrac{y}{y-x}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{2\left(x^3-y^3\right)-y\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\dfrac{2x^3+x^2y-xy^2-2x^3+2y^3-x^2y-xy^2-y^3}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}-\dfrac{y^3-2xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{y^2\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\cdot\dfrac{x}{x-y}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x^2-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^3-xy^2+xy^2-x^3-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

Lê Vũ Anh Thư
Xem chi tiết