Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Thu Hiền
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 10 2021 lúc 21:06

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)  \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)

b. \(D=R\)

c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)

d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)

títtt
Xem chi tiết
Akai Haruma
27 tháng 8 2023 lúc 21:11

Lời giải:
a. TXĐ: $x^2-1\neq 0\Leftrightarrow (x-1)(x+1)\neq 0$

$\Leftrightarrow x\neq \pm 1$

Vậy TXĐ $\mathbb{R}\setminus \left\{\pm 1\right\}$

b. TXĐ: $x\geq 0$ hay $[0;+\infty)$

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 22:56

a) Biểu thức \(4{x^2} - 1\) có nghĩa với mọi \(x \in \mathbb{R}\)

Vậy tập xác định của hàm số này là \(D = \mathbb{R}\)

b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \({x^2} + 1 \ne 0,\)tức là với mọi \(x \in \mathbb{R}\)

Vậy tập xác định của hàm số này là \(D = \mathbb{R}\)

c) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(\frac{1}{x}\) có nghĩa, tức là khi \(x \ne 0,\)

Vậy tập xác định của hàm số này là \(D = \mathbb{R}{\rm{\backslash }}\{ 0\} \)

Jisoo Kim
Xem chi tiết
10A6_7_Lê Minh Đức
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 20:29

TXĐ: \(D=[2;+\infty)\)

Phùng Minh Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 10 2021 lúc 23:11

TXĐ: D=R\{0;1}

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2023 lúc 19:51

loading...  

tran gia vien
Xem chi tiết
Hồng Phúc
17 tháng 9 2021 lúc 10:14

a, Hàm số xác định khi: \(\left\{{}\begin{matrix}cos\dfrac{x}{2}\ne3\\tanx\ne\sqrt{3}\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{3}+k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

Hồng Phúc
17 tháng 9 2021 lúc 10:16

b, Hàm số xác định khi: \(sin2x\ne0\Leftrightarrow2x\ne k\pi\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

Linh Nguyen
Xem chi tiết
Akai Haruma
17 tháng 8 2021 lúc 2:02

Lời giải:

a. ĐKXĐ: $x^3-x\neq 0$

$\Leftrightarrow x(x-1)(x+1)\neq 0$

$\Leftrightarrow x\neq 0;\pm 1$

Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{0;\pm 1\right\}\)

b.

ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ |x|-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq \pm 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 1\end{matrix}\right.\)

TXĐ:

\([0;+\infty)\setminus \left\{1\right\}\)

c.

ĐKXĐ: \(x^2-1\neq 0\Leftrightarrow x\neq \pm 1\)

TXĐ: \(\mathbb{R}\setminus \left\{\pm 1\right\}\)