Tìm GTNN của biểu thức:
\(A=x^2+2y^2+2xy-2x-8y+2017\)
tìm GTNN của biểu thức A+2x^2 +2y^2-2xy-2x-2y+2017
Ta có: \(A=2x^2+2y^2-2xy-2x-2y+2017\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+2015\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2+2015\ge2015\)
Dấu "=" xảy ra khi \(x=y=1\)
Vậy \(A_{MIN}=2015\Leftrightarrow x=y=1.\)
Tìm GTNN của các biểu thức
D=x2+2y+2y2-2xy+2010
E= 2x2+y2-2xy-2y+12
F=x2+2y2-2xy+2x-6y+2018
Tìm GTLN của biểu thức
A=100-2x-x2
B=-3x2+x
C=12-3x2-4y2+18x-8y
Bài 2:
a: \(=-\left(x^2+2x-100\right)\)
\(=-\left(x^2+2x+1-101\right)\)
\(=-\left(x+1\right)^2+101< =101\)
Dấu = xảy ra khi x=-1
b: \(=-3\left(x^2-\dfrac{1}{3}x\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)
\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}< =\dfrac{1}{12}\)
Dấu = xảy ra khi x=1/6
c: \(=-\left(3x^2+4y^2-18x+8y-12\right)\)
\(=-\left(3x^2-18x+27+4y^2+8y+4-43\right)\)
\(=-3\left(x-3\right)^2-4\left(y+1\right)^2+43< =43\)
Dấu = xảy ra khi x=3 và y=-1
tìm giá trị nhỏ nhất của A= x^2+2y^2+2xy-2x-8y+2017
Tìm GTNN của biểu thức:
A=x2 + y2 -2x +6y +20
B=x2 +2y2 +2xy -4x -8y +2014
\(A=x^2+y^2-2x+6y+20\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+10\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+10\ge10\)
Vậy GTNN của A là 10 khi \(x=1\) và \(y=-3\)
\(B=x^2+2y^2+2xy-4x-8y+2014\)
\(=\left[\left(x^2+2xy+y^2\right)-4\left(x+y\right)+4\right]+\left(y^2-4y+4\right)+2006\)
\(=\left(x+y-2\right)^2+\left(y-2\right)^2+2006\ge2006\)
Vậy GTNN của B là 2006 khi \(x=0\) và \(y=2\)
tìm gtnn của biểu thức : A= x^2 -2xy +2y^2 +2x -10y +2033
Giải:x2-2xy+y2+y2+2x-10y+2033=(x-y)2+2(x-y)+1+y2-8y+16+2016
=(x+y+1)2+(y-4)2+2016>=2016 Vì(x+y+1)2;(y-4)2 >=0 với mọi x;y
nên A min=2016 khi y=4;x=-5
Cho hình bình hành ABCD . Có M,N,P,Q,E,F lần lượt là trung điểm của AB,BC,CD,AD,AC,BD. Chứng minh MP,NQ,EF đồng quy
Tìm GTNN của biểu thức :
\(Q=x^2+2y^2-2xy-4y+2017\)
\(Q=x^2+2y^2-2xy-4y+2017\)
\(Q=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2013\)
\(Q=\left(x-y\right)^2+\left(y-2\right)^2+2013\ge2013\)
Vậy GTNN của Q=2013 <=> \(\orbr{\begin{cases}x-y=0\\y-2=0\end{cases}}\)<=>\(\orbr{\begin{cases}\\\end{cases}}x=y=2\)
Tìm GTNN của biểu thức: A = \(-x^2-2y^2-2xy+2x-2y-15\)
HELP MEEEE:
Tìm GTNN của biểu thức:
a) A= x^2+2x+12
b) B= x^2+2y^2+2xy-2x+2y+33
a) \(A=x^2+2x+12\)
\(A=x^2+2x+1+11\)
\(A=\left(x+1\right)^2+11\)
Có: \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+11\ge11\)
Dấu bằng xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy: \(Min_A=11\) tại \(x=-1\)
tìm GTNN của biểu thức
A=x^2+2y^2+2xy+2x-4y+2016
\(A=x^2+2y^2+2xy+2x-4y+2016\)
\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)
\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)
Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)
Hay \(A\ge2006;\forall x,y\)
Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)