Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mary
Xem chi tiết
Hoàng Thị Ngọc Anh
16 tháng 12 2017 lúc 20:12

Ta có: \(A=2x^2+2y^2-2xy-2x-2y+2017\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+2015\)

\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2+2015\ge2015\)

Dấu "=" xảy ra khi \(x=y=1\)

Vậy \(A_{MIN}=2015\Leftrightarrow x=y=1.\)

Công Mạnh Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2022 lúc 23:01

Bài 2: 

a: \(=-\left(x^2+2x-100\right)\)

\(=-\left(x^2+2x+1-101\right)\)

\(=-\left(x+1\right)^2+101< =101\)

Dấu = xảy ra khi x=-1

b: \(=-3\left(x^2-\dfrac{1}{3}x\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)

\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}< =\dfrac{1}{12}\)

Dấu = xảy ra khi x=1/6

c: \(=-\left(3x^2+4y^2-18x+8y-12\right)\)

\(=-\left(3x^2-18x+27+4y^2+8y+4-43\right)\)

\(=-3\left(x-3\right)^2-4\left(y+1\right)^2+43< =43\)

Dấu = xảy ra khi x=3 và y=-1

BiBo MoMo
Xem chi tiết
Thuy Tran
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
19 tháng 8 2018 lúc 10:19

\(A=x^2+y^2-2x+6y+20\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+10\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+10\ge10\)

Vậy GTNN của A là 10 khi \(x=1\)\(y=-3\)

\(B=x^2+2y^2+2xy-4x-8y+2014\)

\(=\left[\left(x^2+2xy+y^2\right)-4\left(x+y\right)+4\right]+\left(y^2-4y+4\right)+2006\)

\(=\left(x+y-2\right)^2+\left(y-2\right)^2+2006\ge2006\)

Vậy GTNN của B là 2006 khi \(x=0\)\(y=2\)

Phạm Văn Chí
Xem chi tiết
Lê Vương
23 tháng 1 2017 lúc 20:24

Giải:x2-2xy+y2+y2+2x-10y+2033=(x-y)2+2(x-y)+1+y2-8y+16+2016

=(x+y+1)2+(y-4)2+2016>=2016 Vì(x+y+1)2;(y-4)2 >=0 với mọi x;y

nên A min=2016 khi y=4;x=-5

Phạm Văn Chí
2 tháng 2 2017 lúc 11:49

hay thanks

Phạm Văn Chí
10 tháng 2 2017 lúc 12:29

Cho hình bình hành ABCD . Có M,N,P,Q,E,F lần lượt là trung điểm của AB,BC,CD,AD,AC,BD. Chứng minh MP,NQ,EF đồng quy

Vân Trang Nguyễn Hải
Xem chi tiết
Nguyễn Châm Anh
7 tháng 8 2017 lúc 7:50

\(Q=x^2+2y^2-2xy-4y+2017\)

\(Q=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2013\)

\(Q=\left(x-y\right)^2+\left(y-2\right)^2+2013\ge2013\)

Vậy GTNN của Q=2013 <=> \(\orbr{\begin{cases}x-y=0\\y-2=0\end{cases}}\)<=>\(\orbr{\begin{cases}\\\end{cases}}x=y=2\)

Bỉnh Yumi Bướng
Xem chi tiết
Khởi My
12 tháng 12 2016 lúc 21:58

lớn nhất chứ

Transformers
Xem chi tiết
Minh Anh
27 tháng 8 2016 lúc 22:25

a) \(A=x^2+2x+12\)

\(A=x^2+2x+1+11\)

\(A=\left(x+1\right)^2+11\)

Có: \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+11\ge11\)

Dấu bằng xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy: \(Min_A=11\) tại \(x=-1\)

D O T | ☪ Alan Wa...
Xem chi tiết
Lê Tài Bảo Châu
13 tháng 10 2019 lúc 22:59

\(A=x^2+2y^2+2xy+2x-4y+2016\)

\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)

\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)

Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)

Hay \(A\ge2006;\forall x,y\)

Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Lê Tài Bảo Châu
13 tháng 10 2019 lúc 23:07

Mình làm có gì sai hả @@ 

lê duy mạnh
17 tháng 10 2019 lúc 20:05

do em điểm cao qua mà

tích cho a đi