tìm giá trị nhỏ nhất của biểu thức \(\sqrt{x}+1\)
Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức:
\(A=\sqrt{1-x}+\sqrt{1+x}\)
Ta có:
\(A=\sqrt{1-x}+\sqrt{1+x}\) \(\left(-1\le x\le1\right)\)
\(=1.\sqrt{1-x}+1.\sqrt{1+x}\)
Áp dụng BĐT Bunhiacopxki, ta có:
\(A=1.\sqrt{1-x}+1.\sqrt{1+x}\)
\(\le\sqrt{\left(1^2+1^2\right).\left(1-x+1+x\right)}=\sqrt{2.2}=2\)
Vậy \(A_{max}=2\), đạt được khi và chỉ khi \(\dfrac{1}{\sqrt{1-x}}=\dfrac{1}{\sqrt{1+x}}\Leftrightarrow1-x=1+x\Leftrightarrow x=0\)
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Bài 1:
Ta có: \(D=\sqrt{16x^4}-2x^2+1\)
\(=4x^2-2x^2+1\)
\(=2x^2+1\)
1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 )
a) Tính giá trị biểu thức A khi x = 9
b) Tìm x để A = 3
c) Tìm giá trị nhỏ nhất của A
2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9)
a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)
b) Tìm x để B có giá trị âm
c) Tìm giá trị nhỏ nhất của B
3) Cho biểu thức C = \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1
a) Tìm x để C = 7
b) Tìm x để C > 6
c) Tìm giá trị nhỏ nhất của C – \(\sqrt{x}\)
4) Cho biểu thức D = \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\) với x > 0 ; x ≠ 1
a) Tính giá trị biểu thức D biết \(x^2\) - 8x - 9 = 0
b) Tìm x để D có giá trị là \(\dfrac{1}{2}\)
c) Tìm x để D có giá trị nguyên
5) Cho biểu thức E = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\) với x ≥ 0 ; x ≠ 1 ; x ≠ 9
a) Tính giá trị biểu thức E tại x = 4 + \(2\sqrt{3}\)
b) Tìm điều kiện của x để E < 1
c) Tìm x nguyên để E có giá trị nguyên
Bài 5:
a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:
\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)
b: Để E<1 thì E-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
c: Để E nguyên thì \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)
hay \(x\in\left\{16;25;49\right\}\)
Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
Thay \(x=\sqrt{3}-1\) vào \(B\), ta được
\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)
b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)
Vậy \(B_{min}=-2\) khi \(x=0\)
Tìm giá trị nhỏ nhất của biểu thức :\(P=\sqrt{1-x}+\sqrt{x+1}+2\sqrt{x}\)
`P=\sqrt{1-x}+\sqrt{1+x}+2\sqrtx(0<=x<=1)`
Áp dụng BĐT `\sqrta+\sqrtb>=\sqrt{a+b}`
`=>\sqrt{1-x}+\sqrt{x}>=1`
`=>P>=1+\sqrtx+\sqrt{x+1}>=1+0+1=2`
Dấu "=" `<=>x=0`
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
Tìm giá trị nhỏ nhất của biểu thức\(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
ĐKXĐ: \(x\ge0\)
\(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{2}{\sqrt{x}+1}\le2\Rightarrow1-\dfrac{2}{\sqrt{x}+1}\ge-1\)
\(\Rightarrow P_{min}=-1\) khi \(x=0\)
Có \(C=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\). Tìm các giá trị của x để biểu thức C đạt giá trị nhỏ nhất
\(C=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Ta có: \(\sqrt{x}+1\ge1;\forall x\)
\(\Rightarrow\dfrac{2}{\sqrt{x}+1}\le\dfrac{2}{1}=2\)
\(\Rightarrow C\ge1-2=-1\)
Vậy \(Min_C=-1\) khi \(x=0\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=\(\sqrt{4\sqrt{x}-x}\) với các giá trị của x thỏa mãn biểu thức A xác định.
Ta có:
\(A=\sqrt{4\sqrt{x}-x}\) (ĐK: \(16\ge x\ge0\))
Mà: \(\sqrt{4\sqrt{x}-x}\ge0\forall x\)
Dấu "=" xảy ra:
\(4\sqrt{x}-x=0\)
\(\Leftrightarrow4\sqrt{x}-\left(\sqrt{x}\right)^2=0\)
\(\Leftrightarrow\sqrt{x}\left(4-\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\4-\sqrt{x}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Vậy: \(A_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
tìm giá trị nhỏ nhất của biểu thức: \(\dfrac{1}{\sqrt{x}-1}\)( x>0, x#1)
\(A\le-1\forall x\)
Dấu '=' xảy ra khi x=0
Gỉa sử x,y là các số dương thỏa mãn đẳng thức x+y=\(\sqrt{10}\). Tìm giá trị của x và y để biểu thức P=\(\left(x^4+1\right)\left(y^4+1\right)\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy.
TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc