Cho tam giác vuông ABC có cạnh huyền AB=√88 cm . Cạnh BC = 6cm Gọi K là trung điểm của AC . Tính độ dài BK
Cho tam giác ABC có cạnh huyền AB= căn88 cm cạnh BC=6cm, gọi K là trung điểm AC. Tính BK=?
bạn nhấn vào đúng 0 sẽ hiện ra kết quả, mình giải rồi dễ lắm
Cho tam giác vuông ABC có cạnh huyền AB = \(\sqrt{88cm}\),cạnh BC = 6cm gọi K là trung điểm của BC.Tính độ dài BK
Cho cạnh huyền AB vào làm gì ko bt? để làm rối học sinh à?
K là trung điểm BC nên BK = CK và 6 cm = BC = BK + CK
Hay 6 cm = 2BK suy ra BK = 3 cm
Mà BK = CK nên BK = CK = 3 cm
Bài này vẽ hình làm cảnh á?
cho tam giác ABC vuông tại A. có AB=6cm; BC=10cm.
a, tính độ dài cạnh AC và so sánh các góc trong tam giác ABC.
b, trên tia đối của AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD, cm: tam giác BCD cân.
c, Gọi K là trung điểm của cạnh BC, đường thẳng DK cắt AC tại M. Tính MC.
d, đường trung trực d của đoạn thẳng AC cắt đường thẳng DC tại Q, cm 3 điểm B,M,Q thẳng hàng
a, Ta có : ∆ ABC vuông tại A ( gt)
-> BC^2 = AB^2 + AC^2 ( đ/lí Pytago )
-> AC^2 = BC^2 - AB^2
Mà BC = 10 cm ( gt ) ; AB= 6 cm ( gt)
Nên AC^2 = 10^2 - 6^2
-> AC^2 = 100- 36
-> AC^2 = 64
-> AC = 8 cm
cho tam giác ABC vuông tại A. có AB=6cm; BC=10cm.
a, tính độ dài cạnh AC và so sánh các góc trong tam giác ABC.
b, trên tia đối của AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD, cm: tam giác BCD cân.
c, Gọi K là trung điểm của cạnh BC, đường thẳng DK cắt AC tại M. Tính MC.
d, đường trung trực d của đoạn thẳng AC cắt đường thẳng DC tại Q, cm 3 điểm B,M,Q thẳng hàng
Tam giác vuông ABC có cạnh huyền AB = căn bậc 2 của 58 ; BC = 6cm. Gọi K là trung điểm của AC. Tính BC
Cho tam giác ABC vuông tại B có AB=6cm, BC=8cm. Gọi K là trung điểm AC. Tính độ dài AC,BK.
theo pytago \(=>AC=\sqrt{AB^2+BC^2}=\sqrt{6^2+8^2}=10cm\)
K là trung điểm AC =>BK là trung tuyến AC
=>\(BK=\dfrac{1}{2}AC=\dfrac{1}{2}.10=5cm\)
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow AC^2=6^2+8^2=100\)
hay AC=10(cm)
Suy ra: \(BK=\dfrac{AC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Cho tam giác ABC vuông tại A có AB=6cm; BC=10cm.
a) Tính độ dài cạnh AC và so sánh các góc của tam giác ABC
b) Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD. Chứng minh tam giác BCD cân
c) Gọi K là trung điểm của cạnh BC, đg thẳng DK cắt cạnh AC tại M. tính MC.
d) Đường trung trực d của đoạn thẳng AC cắt đường thẳng DC tại Q. Chứng minh 3 điểm B, M, Q thẳng hàng
a) Xét △ABC vuông tại A có :
AB2+AC2=BC2(định lý py-ta-go)
⇒ AC2=BC2-AB2
⇒ AC2=102-62
⇒ AC2=100-36
⇒ AC2=64
⇒ AC=8
Vậy AC=8cm
b)
Xét △ABC và △ADC có :
AC chung
AB=AD(gt)
∠BAC=∠DAC(=90)
⇒△ABC=△ADC(c-g-c)
⇒BC=DC(2 cạnh tương ứng)
Xét △BCD có BC=DC(cmt)
⇒△BCD cân tại C (định lý tam giác cân)
c)
Xét △BCD cân tại C có
K là trung điểm của BC (gt)
A là trung điểm của BD (gt)
⇒DK , AC là đường trung tuyến của △BCD
mà DK cắt AC tại M nên M là trọng tâm của △BCD
⇒CM=2/3AC
⇒CM=2/3.8
⇒CM=16/3cm
d)
Xét △AMQ và △CMQ có
MQ chung
MA=MC(gt)
∠AMQ=∠CMQ(=90)
⇒△AMQ=△CMQ(C-G-C)
⇒∠MAQ=∠C2(2 góc tương ứng )
QA=QC( 2 cạnh tương ứng)
Vì △ABC=△ADC(theo b)
⇒∠C1=∠C2(2 góc tương ứng)
⇒∠C1=∠MAQ
mà 2 góc này có vị trí SLT
⇒AQ//BC
⇒∠QAD=∠CBA( đồng vị )
mà∠CBA=∠CDA(△BDC cân tại C)
⇒∠QAD=∠QDA
⇒△ADQ cân tại Q
⇒QA=QD
mà QA=QC(cmt)
⇒DQ=CQ
⇒BQ là đường trung tuyến của△BCD
⇒B,M,D thẳng hàng
Cho tam giác ABC vuông tại A có AB= 6cm BC= 10cm a, tính độ dài AC và so sánh các góc của tam giác ABC b, trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD. Gọi K là trung điểm của cạnh BC đường thẳng DK cắt cạnh AC tại M. Tính MC c, Đường trung trực D của đoạn thẳng AC cắt đường thẳng DC tại Q. CM 3 điểm B,M,Q thẳng hàng