Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
D.Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2022 lúc 21:27

\(=5\sqrt{2}-\dfrac{3}{2}\cdot4\sqrt{2}-\dfrac{1}{3}\cdot6\sqrt{2}+8=-3\sqrt{2}+8\)

Nguyễn Thị Mỹ Lệ
Xem chi tiết
qwerty
14 tháng 6 2017 lúc 9:29

\(\left(\sqrt{8}-2\sqrt{32}+3\sqrt{50}\right)+\left(\dfrac{1}{3+2\sqrt{2}}-\dfrac{1}{3-2\sqrt{2}}\right)\)

\(=\left(2\sqrt{2}-8\sqrt{2}+15\sqrt{2}\right)+\left(3+2\sqrt{2}-\left(3+2\sqrt{2}\right)\right)\)

\(=\left(9\sqrt{2}\right)+\left(3-2\sqrt{2}-3-2\sqrt{2}\right)\)

\(=9\sqrt{2}+\left(-4\sqrt{2}\right)\)

\(=9\sqrt{2}-4\sqrt{2}\)

\(=5\sqrt{2}\)

Mysterious Person
14 tháng 6 2017 lúc 12:31

\(\left(\sqrt{8}-2\sqrt{32}+3\sqrt{50}\right)+\left(\dfrac{1}{3+2\sqrt{2}}-\dfrac{1}{3-2\sqrt{2}}\right)\)

= \(\left(2\sqrt{2}-8\sqrt{2}+15\sqrt{2}\right)+\left(\dfrac{3-2\sqrt{2}-3-2\sqrt{2}}{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\right)\)

= \(9\sqrt{2}+\left(\dfrac{-4\sqrt{2}}{1}\right)\) = \(9\sqrt{2}-4\sqrt{2}\) = \(5\sqrt{2}\)

Duong Thi Nhuong
Xem chi tiết
Lê Quỳnh Trang
14 tháng 6 2017 lúc 8:12

= 5 căn 2

Hà thúy anh
14 tháng 6 2017 lúc 9:29

= \(\left(2\sqrt{2}-8\sqrt{2}+15\sqrt{2}\right)\left[3-2\sqrt{2}-\left(3+2\sqrt{2}\right)\right]\)

= \(9\sqrt{2}\left(3-2\sqrt{2}-3-2\sqrt{2}\right)\)

= \(9\sqrt{2}\left(-4\sqrt{2}\right)\)

= \(-9.2.4\)

= \(-72\)

qwerty
16 tháng 6 2017 lúc 16:02

\(\left(\sqrt{8}-2\sqrt{32}+3\sqrt{50}\right)+\left(\dfrac{1}{3+2\sqrt{2}}-\dfrac{1}{3-2\sqrt{2}}\right)\)

\(=\left(2\sqrt{2}-8\sqrt{2}+15\sqrt{2}\right)+\left[3-2\sqrt{2}-\left(3+2\sqrt{2}\right)\right]\)

\(=\left(9\sqrt{2}\right)+\left(3-2\sqrt{2}-3-2\sqrt{2}\right)\)

\(=9\sqrt{2}+\left(-4\sqrt{2}\right)\)

\(=9\sqrt{2}-4\sqrt{2}\)

\(=5\sqrt{2}\)

hbvvyv
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2023 lúc 20:44

a: \(\dfrac{\sqrt{50}-\sqrt{32}+\sqrt{8}}{\sqrt{2}}\)

\(=\dfrac{5\sqrt{2}-4\sqrt{2}+2\sqrt{2}}{\sqrt{2}}\)

\(=\dfrac{3\sqrt{2}}{\sqrt{2}}=3\)

b: \(\dfrac{4}{\sqrt{5}-1}-5\sqrt{\dfrac{1}{5}}\)

\(=\dfrac{4\left(\sqrt{5}+1\right)}{5-1}-\sqrt{5}\)

\(=\sqrt{5}+1-\sqrt{5}\)

=1

dswat monkey
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 6:54

a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)

b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)

c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)

Ly Ly
Xem chi tiết
Hoàng Thanh Thanh
5 tháng 7 2021 lúc 17:10

a. \(\sqrt{48}-2\sqrt{32}-\sqrt{75}+3\sqrt{50}\) = \(4\sqrt{3}-2.4\sqrt{2}-5\sqrt{3}+3.5\sqrt{2}\)

\(4\sqrt{3}-8\sqrt{2}-5\sqrt{3}+15\sqrt{2}\)  = \(-\sqrt{3}+7\sqrt{2}\)

b. \(\sqrt{20}-15\sqrt{\dfrac{1}{5}}+\sqrt{\left(1-\sqrt{5}\right)^2}\) = \(2\sqrt{5}-3.5.\sqrt{\dfrac{1}{5}}+\left|1-\sqrt{5}\right|\)

\(2\sqrt{5}-3\sqrt{25.\dfrac{1}{5}}+\sqrt{5}-1\) =  \(2\sqrt{5}-3\sqrt{5}+\sqrt{5}-1\) = \(-1\)

c. \(\dfrac{3}{3+2\sqrt{3}}+\dfrac{3}{3-2\sqrt{3}}\) = \(\dfrac{3\left(3-2\sqrt{3}\right)+3\left(3+2\sqrt{3}\right)}{\left(3+2\sqrt{3}\right)\left(3-2\sqrt{3}\right)}\) 

\(\dfrac{9-6\sqrt{3}+9+6\sqrt{3}}{\left(3+2\sqrt{3}\right)\left(3-2\sqrt{3}\right)}\) = \(\dfrac{18}{9-12}=\dfrac{18}{-3}=-6\)

 

 

 

 

Hoàng Phú Lợi
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 20:05

1:

a: \(\sqrt{36}-\sqrt{100}=6-10=-4\)

b: Để \(\sqrt{\dfrac{2}{2x-1}}\) có nghĩa thì \(\dfrac{2}{2x-1}>=0\)

=>2x-1>0

=>x>1/2

2:

a: \(A=\dfrac{\left(15\sqrt{180}-5\sqrt{200}-3\sqrt{450}\right)}{\sqrt{10}}\)

\(=15\sqrt{\dfrac{180}{10}}-5\sqrt{\dfrac{200}{10}}-3\sqrt{\dfrac{450}{10}}\)

\(=15\sqrt{18}-5\sqrt{20}-3\sqrt{45}\)

\(=45\sqrt{2}-10\sqrt{5}-9\sqrt{5}\)

\(=45\sqrt{2}-19\sqrt{5}\)

b: \(B=\sqrt{32}-\sqrt{50}-16\sqrt{\dfrac{1}{8}}\)

\(=4\sqrt{2}-5\sqrt{2}-\dfrac{16}{\sqrt{8}}\)

\(=-\sqrt{2}-2\sqrt{8}=-\sqrt{2}-4\sqrt{2}=-5\sqrt{2}\)

Ly Ly
Xem chi tiết
Nguyễn Ngọc Lộc
4 tháng 7 2021 lúc 16:33

\(a,=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}\)

\(=\sqrt{2}\left(3-12+8-5\right)=-6\sqrt{2}\)

\(b,=\left|\sqrt{2}-\sqrt{3}\right|+3\sqrt{2}=\sqrt{3}-\sqrt{2}+3\sqrt{2}=\sqrt{3}+2\sqrt{2}\)

\(c,=\sqrt{5}+\sqrt{5}+\dfrac{5}{\sqrt{5}}-1=3\sqrt{5}-1\)

\(d,=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+1+\sqrt{3}=2\)

An Thy
4 tháng 7 2021 lúc 16:33

a) \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}=3\sqrt{2}-4\sqrt{9.2}+2\sqrt{16.2}-\sqrt{25.2}\)

\(=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}=-6\sqrt{2}\)

b) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}=\left|\sqrt{2}-\sqrt{3}\right|+\sqrt{9.2}=\sqrt{3}-\sqrt{2}+3\sqrt{2}\)

\(=2\sqrt{2}+\sqrt{3}\)

c) \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}=\sqrt{25.\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{9.5}+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}\)

\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-1=3\sqrt{5}-1\)

d) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}+\left|\sqrt{3}+1\right|\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{3}+1=\left|2-\sqrt{3}\right|+\sqrt{3}+1=2-\sqrt{3}+\sqrt{3}+1=3\)

Qúy Công Tử
Xem chi tiết
Lê Minh Anh
1 tháng 8 2018 lúc 22:08

1, \(\sqrt{8}-3\sqrt{32}+\sqrt{72}=2\sqrt{2}-12\sqrt{2}+6\sqrt{2}=-4\sqrt{2}\)

2,\(6\sqrt{12}-2\sqrt{48}+5\sqrt{75}-7\sqrt{108}=12\sqrt{3}-8\sqrt{3}+25\sqrt{3}-42\sqrt{3}=-13\sqrt{3}\)

3, \(\sqrt{20}+3\sqrt{45}-6\sqrt{80}-\dfrac{1}{3}\sqrt{125}=2\sqrt{5}+9\sqrt{5}-24\sqrt{5}-\dfrac{5}{3}.\sqrt{5}=-\dfrac{44}{3}.\sqrt{5}\)

4, \(2\sqrt{5}-\sqrt{125}-\sqrt{80}=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}=-7\sqrt{5}\)

5, \(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}=3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}=-10\sqrt{2}\)

nguyễn công huy
Xem chi tiết
HT.Phong (9A5)
24 tháng 8 2023 lúc 14:54

\(\dfrac{\sqrt{8}+3}{\sqrt{17-3\sqrt{32}}}-\dfrac{3-2\sqrt{5}}{\sqrt{29-12\sqrt{5}}}-\dfrac{1}{\sqrt{12+2\sqrt{35}}}\) 

\(=\dfrac{2\sqrt{2}+3}{\sqrt{17-12\sqrt{2}}}-\dfrac{3-2\sqrt{5}}{\sqrt{29-12\sqrt{5}}}-\dfrac{1}{\sqrt{12+2\sqrt{35}}}\)

\(=\dfrac{2\sqrt{2}+3}{\sqrt{3^2-2\cdot3\cdot2\sqrt{2}+\left(2\sqrt{2}\right)^2}}-\dfrac{3-2\sqrt{5}}{\sqrt{3^2-2\cdot3\cdot2\sqrt{5}+\left(2\sqrt{5}\right)^2}}-\dfrac{1}{\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}\cdot\sqrt{7}+\left(\sqrt{7}\right)^2}}\)

\(=\dfrac{2\sqrt{2}+3}{\sqrt{\left(2\sqrt{2}-3\right)^2}}-\dfrac{3-2\sqrt{5}}{\sqrt{\left(3-2\sqrt{5}\right)^2}}-\dfrac{1}{\sqrt{\left(\sqrt{5}+\sqrt{7}\right)^2}}\)

\(=\dfrac{2\sqrt{2}+3}{2\sqrt{2}-3}+\dfrac{3-2\sqrt{5}}{3-2\sqrt{5}}-\dfrac{1}{\sqrt{5}+\sqrt{7}}\)

\(=\dfrac{\left(2\sqrt{2}+3\right)^2}{\left(2\sqrt{2}+3\right)\left(2\sqrt{2}-3\right)}+1-\dfrac{\sqrt{5}-\sqrt{7}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}\)

\(=17-12\sqrt{2}+1-\dfrac{\sqrt{5}-\sqrt{7}}{2}\)

\(=\dfrac{2\cdot\left(18-12\sqrt{2}\right)}{2}-\dfrac{\sqrt{5}-\sqrt{7}}{2}\)

\(=\dfrac{36-24\sqrt{2}-\sqrt{5}+\sqrt{7}}{2}\)