\(\left(\sqrt{8}-2\sqrt{32}+3\sqrt{50}\right)+\left(\dfrac{1}{3+2\sqrt{2}}-\dfrac{1}{3-2\sqrt{2}}\right)\)
\(=\left(2\sqrt{2}-8\sqrt{2}+15\sqrt{2}\right)+\left(3+2\sqrt{2}-\left(3+2\sqrt{2}\right)\right)\)
\(=\left(9\sqrt{2}\right)+\left(3-2\sqrt{2}-3-2\sqrt{2}\right)\)
\(=9\sqrt{2}+\left(-4\sqrt{2}\right)\)
\(=9\sqrt{2}-4\sqrt{2}\)
\(=5\sqrt{2}\)
\(\left(\sqrt{8}-2\sqrt{32}+3\sqrt{50}\right)+\left(\dfrac{1}{3+2\sqrt{2}}-\dfrac{1}{3-2\sqrt{2}}\right)\)
= \(\left(2\sqrt{2}-8\sqrt{2}+15\sqrt{2}\right)+\left(\dfrac{3-2\sqrt{2}-3-2\sqrt{2}}{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\right)\)
= \(9\sqrt{2}+\left(\dfrac{-4\sqrt{2}}{1}\right)\) = \(9\sqrt{2}-4\sqrt{2}\) = \(5\sqrt{2}\)