Cho tam giác ABC vuông tại A. Kẻ đường cao AH.(Giúp mình câu e, f)
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường cao AH, tia phân giác của góc ABC cắt AC tại F và AH tại E. a) Tính BC, AF, FC b) Chứng minh tam giác ABC đồng dạng tam giác HBA c) Chứng minh AE.AF=EH.FC Mong các bạn ra đáp án giúp mình câu này với Thank you các bạn❤❤❤
a: BC=căn 6^2+8^2=10cm
BF là phân giác
=>FA/AB=FC/BC
=>FA/3=FC/5=(FA+FC)/(3+5)=8/8=1
=>FA=3cm; FC=5cm
b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
cho tam giác ABC vuông tại A (AB<AC) và trung tuyến AD. Kẻ đường thẳng vuông góc với Ad tại D lần lượt cắt AC tại E và AB tại F.
a) cm: tam giác DCE đồng dạng tam giác DFB
b) cm: AE.AC=AB.AF
c) đường cao AH của tam giác ABC cắt EF tại I. Cmr:\(\frac{S_{ABC}}{S_{AEF}}=\left(\frac{AD}{AI}\right)^2\)giúp mình câu c gấp!!
Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?
Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh AD=BC. gọi E là giao điểm AD và BC, chứng minh tam giác EAD=EBD.
Câu 3: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. Chứng minh BA=BE
Câu 4: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. gọi F là giao điểm của tia BA và ED. chứng minh tam giác BDA=BDE và DC=DF
Giúp mình giải lun nhé. Giúp mình đi mình Tick cho!!!
Cho tam giác abc vuông tại a,bc=5cm,°C=30° a)giải tam giác vuông ABC. b)tính đường cao AH c)kẻ HE vuông góc AB TẠI E VÀ HF VUÔNG GÓC AC TẠI F CM :AH\3=BE.CF.BC cần gấp
Câu 15:
a: ĐKXĐ: x>=0; x<>1
cho tam giác ABC cân tại A có đường cao AH. E là trung điểm của AB. Đường thẳng vuông góc với AB tại E cắt AH tại F. Chứng minh FA = FC
Giải giúp mình với !!!
Bài 1: Cho tam giác abc vuông tại a, ah vuông góc bc taịh, lấy d thuộc ah, e thuộc tia đối ha sao cho he=ad, kẻ đường vuông góc với ad tại d cắt ac tại f. CMR: góc bef=90 độ
Bài 2: Cho tam giác abc vuông tại a, đường cao ah. Hm vuông góc ac, e thuộc tia đối mh sao cho am=em. Kẻ hn vuông góc ab, d thuộc tia đối nh sao cho nh=nd. CMR: d,a,e thẳng hàng
Bài 3 Cho tam giác abc, m là trung điểm bc, ab=6, ac=10,am=4. CMR: góc mab = 90 độ
cố gắng giúp mình nha
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB tại E, Kẻ HF vuông góc với AC tại F. Chứng minh tứ giác BEFC nội tiếp
Gợi ý: A F E ^ = A H E ^ (tính chất hình chữ nhật và A H E ^ = A B H ^ (cùng phụ B H E ^ )
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB tại E, Kẻ HF vuông góc với AC tại F. Chứng minh tứ giác BEFC nội tiếp.
Ta có: \(\widehat{C_1}=\widehat{A_1}\)(cùng phụ với \(\widehat{B_1}\)) \(\left(1\right)\)
Xét tứ giác AEHF có: \(\widehat{A}=\widehat{E}=\widehat{F}=\widehat{H}=90^o\)
=> tứ giác AEHF là h.c.n
=> \(\widehat{A_1}=\widehat{E_1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{E_1}=\widehat{C_1}\)
vì \(\widehat{E_1}+\widehat{BEF}=180^o\)
\(\Rightarrow\widehat{C_1}+\widehat{BEF}=180^o\) mà 2 góc đối nhau
=> tứ giác BEFC nội tiếp
cho tam giác ABC nhọn, đường cao Ah. Kẻ HD vuông góc AB tại D. HE vuông góc AC tại E. Chứng minh:
a)AD.AB=AE.AC
b)Góc BDE + góc ECB = 180độ
Câu A mình làm được, giúp mình câu B nhé!
Cho tam giác ABC vuông tại A có đường cao AH, M thuộc AH, kẻ MN song song AB, CM giao AN tại E. CM: tam giác AEC vuông
Mong các bạn giúp, mình đang cần gấp ạ
Kéo dài MN cắt AC tại F
Ta có: \(\hept{\begin{cases}AB//NF\\AB\perp AC\end{cases}\Rightarrow NF\perp}AC\)
Xét tam giác ACN có:
\(\hept{\begin{cases}NF\perp AC\left(cmt\right)\\AH\perp NC\left(gt\right)\end{cases}}\)
Mà M là giao điểm của NF và AH
\(\Rightarrow M\)là trực tâm của tam giác ACN
\(\Rightarrow EC\perp AN\)( tc )
\(\Rightarrow\widehat{AEC}=90^0\)
\(\Rightarrow\Delta AEC\)vuông tại E