Cho tam giác ABC cân tại A. Gọi M, N là trung điểm các cạnh AB, AC. Các đường thẳng vuông góc với AB, AC tại M; N cắt nhau tại điểm O, AO cắt BC tại H. Chứng minh:
a) AMO =ANO
b) AH là phân giác của góc A
c) HB = HC và AH⊥ BC
d) So sánh OC và HB
Cho ∆𝑨𝑩𝑪 cân tại A, đường cao AH (H ∈ BC).
a) Chứng minh ∆𝐴𝐻𝐵 = ∆𝐴𝐻𝐶.
b) Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD = DH.
c) Gọi E là trung điểm của AC, CD cắt AH tại G. Chứng minh B, G, E thẳng hàng.
d) Chứng minh chu vi ∆𝐴𝐵𝐶 > 𝐴𝐻 + 3.𝐵G
Cho ∆ABC cân tại A (góc A > 900 ). Từ B kẻ đường thẳng vuông góc với AC tại điểm E, Từ C kẻ đường thẳng vuông góc với AB tại điểm D.Gọi giao điểm của BE và CD là O
a) Chứng minh ∆𝐵𝐶𝐸 = ∆𝐶𝐵𝐷.
b) Gọi I là trung điểm của BC. Chứng minh ∆𝐼𝐸𝐷 là tam giác cân.
c) Chứng minh OI vuông góc với E D.
d) Trên tia CE lấy điểm F sao cho E là trung điểm của CF. So sánh: DBC và EFB
Cho Tam giác ABC vuông cân tại A. Điểm E nằm giữa A và C, kẻ tia Ex sao cho EB là tia phân giác của góc AEx. Tia Ex cắt đường thẳng vuông góc với AC kẻ từ C tại K. Chứng minh EK<AB
Cho tam giác ABC cân tại B ( góc B = 90° ) Kẻ AD vuông góc với BC, CE vuông góc vs AB ( D thuộc cạnh BC , E thuộc cạch AB ) a) Chứng minh ∆ BAD = ∆ BCE b) Gọi F là giao điểm của AD và CE. chứng minh BF là tia phân giác của góc ABC c) chứng minh FA > AC/2
Cho tam giác ABC nhọn. Đường cao AH. Qua H kẻ Hx vuông góc với AB tại I. Trên tia đối của IH lấy điểm D sao cho IH = ID. Từ H kẻ HK vuông góc HC tại K. Trên tia đối của tia AH lấy điểm E sao cho KH = KE. a) Chứng minh góc DAE = 2 lần góc BAC. b) Nối DE cắt AB và AC theo thứ tự tại M và N. c) Chứng minh ba đường thẳng AH, CM, BH đồng quy tại 1 điểm.
cho tam giác abc cân tại a ab ac 25cm bc=30cm. gọi h là trung điểm của bc.
a, chứng minh ah vuông góc vs bc.
b. tính AH
c, lấy điểm D trên BC và điểm E trên AC sao cho AD = AE. tính tam giác ODB = tam giác OEC.
MN GIÚP MIK VỚI CẦN GẤP.
Cho tam giác ABC vuông tại A. Kẻ phân giác BE của góc ABC (E AC). Trên BC lấy điểm D sao cho AB = BD. a)Chứng minh ΔABE = ΔDBE ; BC ⏊ ED b)Kéo dài DE cắt đường thẳng AB tại M. Chứng minh BM = BC c)Gọi N là trung điểm của MC. Chứng minh ba điểm B; E; N thẳng hàng.