phân tích đa thức thành nhân tử:
\(\sqrt{8}+2\)
cách phân tích đa thức có dạng ax + b\(\sqrt{x}\) + c thành nhân tử với x > 0
từ đó phân tích đa thức x +8 \(\sqrt{x}\) + 7 thành nhân tử với x > 0
Phân tích đa thức thành nhân tử ( với x > hoặc bằng 0 )
2+\(\sqrt{3}+\sqrt{6}+\sqrt{8}\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=2+\sqrt{3}+\sqrt{6}+2\sqrt{2}\)
\(=2+\sqrt{3}+\sqrt{2}\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right)\left(\sqrt{2}+1\right)\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=\left(\sqrt{2}+1\right)\left(2+\sqrt{3}\right)\)
phân tích đa thức thành nhân tử
\(x-6\sqrt{x}+8\)
\(x-6\sqrt{x}+8\)
\(=x-2\sqrt{x}-4\sqrt{x}+8\)
\(=\sqrt{x}\left(\sqrt{x}-2\right)-4\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)\)
Phân tích đa thức thành nhân tử -8 - Phân tích đa thức thành nhân tử -8 x mũ 3 cộng 1 ta được
\(-8x^3+1=1^3-\left(2x\right)^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)
bài 1: Phân tích đa thức thành nhân tử : x^2-6x+8
bài 2: Phân tích đa thức thành nhân tử : x^8+x^7+1
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
phân tích đa thức thành nhân tử: \(\sqrt[3]{x^2+26}+3\sqrt{x}+\sqrt{x+3}=8\)
Phân tích đa thức thành nhân tử
x^3+9x^2+27x+27
3\(\sqrt{3x^3}\)+18x^2+12\(\sqrt{3x}\)+8
\(\dfrac{1}{4}\)-x^2
a) \(x^3+9x^2+27x+27=\left(x+3\right)^3\)
b) \(3\sqrt{3x^3}+18x^2+12\sqrt{3x}+8=\left(\sqrt{3x}+2\right)^3\)
c) \(\dfrac{1}{4}-x^2=\left(\dfrac{1}{2}-x\right)\left(\dfrac{1}{2}+x\right)\)
Phân tích đa thức thành nhân tử: \(3+\sqrt{18}+\sqrt{3+\sqrt{8}}\)
Đặt: \(A=\sqrt{3+\sqrt{8}}\)
=> \(\sqrt{2}A=\sqrt{6+2\sqrt{8}}=\sqrt{\left(2+\sqrt{2}\right)^2}=2+\sqrt{2}=\sqrt{2}\left(\sqrt{2+1}\right)\)
=> \(A=\sqrt{2}+1\)
\(3+\sqrt{18}+\sqrt{3+\sqrt{8}}=3+3\sqrt{2}+\sqrt{2}+1\)
\(=3\left(\sqrt{2}+1\right)+\left(\sqrt{2}+1\right)=4.\left(\sqrt{2}+1\right)\)
dòng thứ 2 là \(\sqrt{2}\left(\sqrt{2}+1\right)\) nhé
Phân tích đa thức \(10x-25x^2\sqrt{2}+4\sqrt{2}\) thành nhân tử.
\(-25x^2\sqrt{2}+10x+4\sqrt{2}=-\sqrt{2}\left(25x^2-\dfrac{10}{\sqrt{2}}-4\right)=-\sqrt{2}.\left(\left(25x\right)^2-2.5.\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\dfrac{5}{2}\right)=-\sqrt{2}\left[\left(5x-\dfrac{1}{\sqrt{2}}\right)^2-\dfrac{5}{2}\right]=-\sqrt{2}.\left(5x-\dfrac{1}{\sqrt{2}}-\dfrac{\sqrt{5}}{\sqrt{2}}\right).\left(5x-\dfrac{1}{\sqrt{2}}+\dfrac{\sqrt{5}}{\sqrt{2}}\right)=-\sqrt{2}.\left(5x-\dfrac{1+\sqrt{5}}{\sqrt{2}}\right)\left(5x-\dfrac{1-\sqrt{5}}{\sqrt{2}}\right)\)
\(a\sqrt{a}+2a+\sqrt{a}+2\)
Phân tích đa thức thành nhân tử
\(a\sqrt{a}+2a+\sqrt{a}+2=\left(a\sqrt{a}+2a\right)+\left(\sqrt{a}+2\right)\)
\(=a\left(\sqrt{a}+2\right)+\left(\sqrt{a}+2\right)=\left(\sqrt{a}+2\right)\left(a+1\right)\)
\(a\sqrt{a}+2a+\sqrt{a}+2=a\left(\sqrt{a}+2\right)+\left(\sqrt{a}+2\right)=\left(a+1\right)\left(\sqrt{a}+2\right)\)
\(a\sqrt{a}+2a+\sqrt{a}+2=\left(\sqrt{a}+2\right)\left(a+1\right)\)