9(2x+3)^2-4(x+1)^2
1: 3/x+1 + 2/x+2 = 5x+4/x2+ 3x + 2
2: 2/3x + 1 - 15/6x2-x-1 = 3/2x - 1
3: 9/3x - 1 - 5-x/3x2-4x+1 = 4/x+ 1
4:5/x - 2 + 2/x+4 = 3x/x2 + 2x - 8
5: 4/x+6 + 1/x - 3 = 9/x2 + 3x - 18
6:x/x-3 - 2x2 +9/2x2 - 3x - 9= 1/2x + 3
\(\frac{3}{x+1}+\frac{2}{x+2}=\frac{5x+4}{x^2+3x+2}.\)ĐKXĐ: \(x\ne-1;-2\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{5x+4}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow3x+6+2x+2=5x+4\)
\(\Leftrightarrow3x+2x-5x=-6-2+4\)
\(\Leftrightarrow0x=-4\)
=> PT vô nghiệm
\(2;\frac{2}{3x-1}-\frac{15}{6x^2-x-1}=\frac{3}{2x-1}\)
\(\Leftrightarrow\frac{2\left(2x-1\right)}{\left(2x-1\right)\left(3x-1\right)}-\frac{15}{6x^2+3x-2x-1}=\frac{3\left(3x-1\right)}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow\frac{4x-2-15}{\left(2x-1\right)\left(3x-1\right)}=\frac{9x-3}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow4x-2-15=9x-3\)
\(\Leftrightarrow4x-9x=2+15-3\)
\(\Leftrightarrow-5x=14\)
.....
mấy cái này mẫu nào dài cậu phân tích ra :
VD : câu 3 : \(3x^2-4x+1\)
\(=3x^2-3x-x+1\)
\(=3x\left(x-1\right)-\left(x-1\right)\)
\(=\left(3x-1\right)\left(x-1\right)\)
r bắt đầu giải PHương trình :)) Mấy câu còn lại tương tự
4; \(\frac{5}{x-2}+\frac{2}{x+4}=\frac{3x}{x^2+2x-8}.\)
\(\Leftrightarrow\frac{5\left(x+4\right)}{\left(x-2\right)\left(x+4\right)}+\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+4\right)}=\frac{3x}{\left(x-2\right)\left(x+4\right)}\)
\(\Leftrightarrow5x+20+2x-4=3x\)
\(\Leftrightarrow4x=-16\Leftrightarrow x=-2\left(TM\right)\)
KL ::
\(5;\frac{4}{x+6}+\frac{1}{x-3}=\frac{9}{x^2+3x-18}\)
\(\Leftrightarrow\frac{4\left(x-3\right)}{\left(x+6\right)\left(x-3\right)}+\frac{x+6}{\left(x-3\right)\left(x+6\right)}=\frac{9}{\left(x-3\right)\left(x+6\right)}\)
\(\Leftrightarrow4x+x=3+9-6\)
\(\Leftrightarrow5x=6\Leftrightarrow x=\frac{6}{5}\)
Bài 2: Tìm x biết:
1,x\(^2\)+4x+4=25
2,(5-2x)\(^2\)-16=0
3,(x-3)\(^3\)-(x-3)(x\(^2\)+3x+9)+9(x+1)\(^2\)=15
4,3(x+2)\(^2\)+(2x-1)\(^2\)-7(x-3)9x+3)=36
5,(x-3)(x\(^2\)+3x+9)+x(x+2)(2-x)=1
6,(2x+1)\(^2\)-4(x+2)\(^2\)=9
7,(x+3)\(^{^{ }2}\)-(x-4)(x+8)=1
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
1, ( x+1/3)^3
2, ( 2x+y^2)^3
3, ( 1/2x^2+1/3y)^3
4, ( 3x^2-2y)^3
5, ( 2/3x^2-1/2y)^3
6, ( 2x+1/2)^3
7, ( x-3)^3
8, ( x+1).(X^2+3x+9)
9, ( x-3).( x^2+3x+9)
10, ( x-2).( x^2+2x+4)
11, ( x+4).( x^2-4x+16)
12, ( x-3y).( x^2+3xy+9y^2)
13, ( x^2-1/3). ( x^4+1/3x^2+1/9)
14, ( 1/3x+2y).( 1/9x^2-2/3xy+4y^2)
Đưa về HĐT
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
1) (x+6)(3x-1)+x+6=0
2) (x+4)(5x+9)-x-4=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
4)2x (2x-3)=(3-2x)(2-5x)
5)(2x-7)^2-6(2x-7)(x-3)=0
6)(x-2)(x+1)=x^2-4
7) x^2-5x+6=0
8)2x^3+6x^2=x^2+3x
9)(2x+5)^2=(x+2)^2
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
1) |2x - 1| = 5
2) |2x - 1| = |x + 5|
3) |3x + 1| = x - 2
4) |3 - 2x| = x + 2
5) |2x - 1| = 5 - x
6) |- 3x| = x - 2
7) |2 - 3x| = 2x + 1
8) |2x - 1| + |4x ^ 2 - 1| = 0
9) (2x + 5)/(x + 3) + 1 = 4/(x ^ 2 + 2x - 3) - (3x - 1)/(1 - x)
10) (x - 1)/(x + 3) - x/(x - 3) = (7x - 3)/(9 - x ^ 2)
11) 5 + 96/(x ^ 2 - 16) = (2x - 1)/(x + 4) + (3x - 1)/(x - 4)
12) (2x)/(2x - 1) + x/(2x + 1) = 1 + 4/((2x - 1)(2x + 1))
13) (x + 2)/(x - 2) - 1/x = 2/(x ^ 2 - 2x)
14) x/(2x - 6) + x/(2x + 2) = (2x + 4)/(x ^ 2 - 2x - 3)
C)(2x-3)2-(2x-3)(x-10)=7
d)(3x-4)2-9(x-3)(x+3)=8
e)(3x-5)(5-3x)+9(x+1)2=30
f)(x+4)2-(x+1)(x-1)=16
Mình cần gấp
c: Ta có: \(\left(2x-3\right)^2-\left(2x-3\right)\left(x-10\right)=7\)
\(\Leftrightarrow4x^2-12x+9-2x^2+20x+3x-30=7\)
\(\Leftrightarrow11x=28\)
hay \(x=\dfrac{28}{11}\)
d: Ta có: \(\left(3x-4\right)^2-9\left(x-3\right)\left(x+3\right)=8\)
\(\Leftrightarrow9x^2-24x+16-9x^2+81=8\)
\(\Leftrightarrow-24x=-89\)
hay \(x=\dfrac{89}{24}\)
f: Ta có: \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Leftrightarrow x^2+8x+16-x^2+1=16\)
\(\Leftrightarrow8x=-1\)
hay \(x=-\dfrac{1}{8}\)
tìm X
1/4+2.(3.x-2/3)=1
(1/2+2X). (2x-3)=0
(4x-5).(5/4.x-2)=0
1/9-(2.x+1/2)mũ 2=0
9.(3x-1/2)mũ 2 =4
1/2.x+2/3.x-1=-10/3
X+1/12=-3/9
a) \(x=\dfrac{25}{72}\)
b)\(x=-\dfrac{1}{4}\)
\(x=\dfrac{3}{2}\)
c)\(x=\dfrac{5}{4}\) hoặc
x \(=\dfrac{8}{5}\)
d và e chịu vì mk kg giỏi lắm về mũ
f)\(x=-2\)
G)\(x=-\dfrac{5}{12}\)
Giải phương trình:
e)4(x-3)2-(2x-1)(2x+1)=10
f) 25(x+3)2+(1-5x)(1+5x)=8
g)9(x+1)2-(3x-2)(3x+2)=10
h)-4(x-1)2+(2x-1)(2x+1)=-3
\(e,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)
\(\Leftrightarrow-24x+37=10\)
\(\Leftrightarrow-24x=-27\)
\(\Leftrightarrow x=\dfrac{9}{8}\)
\(f,25\left(x+3\right)^2+ \left(1-5x\right)\left(1+5x\right)=8\)
\(\Leftrightarrow25\left(x^2+6x+9\right)+\left(1-25x^2\right)=8\)
\(\Leftrightarrow25x^2+150x+225+1-25x^2=8\)
\(\Leftrightarrow150x+226=8\)
\(\Leftrightarrow150x=-218\)
\(\Leftrightarrow x=-\dfrac{109}{75}\)
\(g,9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(\Leftrightarrow9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)
\(\Leftrightarrow9x^2+18x+9-9x^2+4=10\)
\(\Leftrightarrow18x+13=10\)
\(\Leftrightarrow18x=-3\)
\(\Leftrightarrow x=-\dfrac{1}{6}\)
\(h,-4\left(x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=-3\)
\(\Leftrightarrow-4\left(x^2-2x+1\right)+\left(4x^2-1\right)=-3\)
\(\Leftrightarrow-4x^2+8x-4+4x^2-1=-3\)
\(\Leftrightarrow8x-5=-3\)
\(\Leftrightarrow8x=2\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
#\(Toru\)