X4+2x3+10x-25:x2+5
(x4+2x3+10x-25): (x2+5)=3
\(\Leftrightarrow\dfrac{\left(x^2+5\right)\left(x^2-5\right)+2x\left(x^2+5\right)}{x^2+5}=3\)
=>x^2+2x-5=3
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=-4 hoặc x=2
Thực hiện phép tính:
a) 5x+3.(x2-x-1)
b) (5-x).(5+x)-(2x-1)2
c) (x4+2x3+10x-25):(x2+5)
a. 5x + 3(x2 - x - 1)
= 5x + 3x2 - 3x - 3
= 3x2 + 5x - 3x - 3
= 3x2 + 2x - 3
b. (5 - x)(5 + x) - (2x - 1)2
25 - x2 - (4x2 - 4x + 1)
= 25 - x2 - 4x2 + 4x - 1
= 25 - 1 - x2 - 4x2 + 4x
= 24 - 5x2 + 4x
a) \(5x+3\left(x^2-x-1\right)=5x+3x^2-3x-3=3x^2+2x-3\)
b) \(\left(5-x\right)\left(5+x\right)-\left(2x-1\right)^2=25-x^2-4x^2+4x-1=-5x^2+4x+24\)
\(a) 5x+3(x^2-x-1)=5x+3x^2-3x-3\)
\(=3x^2-2x-3\)
\(b)(5-x)(5+x)-(2x-1)^2=25-x^2-4x^2+4x-1\)
\(=-5x^2+4x-24\)
Ai giúp mik với
Bài 5: Làm phép chia:
a. (x4+ 2x3+ 10x – 25) : (x2 + 5)
b. (x3- 3x2+ 5x – 6): ( x – 2)
a: \(=\dfrac{\left(x^2+5\right)\left(x^2-5\right)+2x\left(x^2+5\right)}{x^2+5}=x^2+2x-5\)
b: \(=\dfrac{x^3-2x^2-x^2+2x+3x-6}{x-2}=x^2-x+3\)
tìm x biết
a, ( 2x + 3)2 - 2(2x + 3)(2x - 5) +( 2x - 5 )2 = x2 + 6x + 64
b, (x4 + 2x3 + 10x - 25 ) : ( x2 + 5 ) = 3
giúp mik với ! mai kiểm tra rồi
a)\(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x-5\right)^2=x^2+6x+64\)
\(\Rightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2=x^2+6x+64\)
\(\Rightarrow\left(2x+3-2x+5\right)^2=x^2+6x+64\)
\(\Rightarrow8^2=x^2+6x+64\)
\(\Rightarrow64=x^2+6x+64\)
\(\Rightarrow x^2+6x=0\)
\(\Rightarrow x\left(x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
b) \(\left(x^4+2x^3+10x-25\right):\left(x^2+5\right)=3\)
\(\Rightarrow\left(x^4+5x^2-5x^2-25+2x^3+10x\right):\left(x^2+5\right)=3\)
\(\Rightarrow\left[x^2\left(x^2+5\right)-5\left(x^2+5\right)+2x\left(x^2+5\right)\right]:\left(x^2+5\right)=3\)
\(\Rightarrow\left(x^2+5\right)\left(x^2-5+2x\right):\left(x^2+5\right)=3\)
\(\Rightarrow x^2+2x-5=3\)
\(\Rightarrow x^2+2x-5-3=0\)
\(\Rightarrow x^2+2x-8=0\)
\(\Rightarrow x^2+4x-2x-8=0\)
\(\Rightarrow x\left(x+4\right)-2\left(x+4\right)=0\)
\(\Rightarrow\left(x+4\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Phân tích
a,(x2 + x + 2)3 - (x+1)3 = x6 +1 b,(x2 + 10x + 8)2 - (8x + 4)(x2 + 8x+7)
c, A= x4 + 2x3 + 3x2 + 2x+4 d,B= x4 + 4x3 + +8x2 + 8x + 4
e, C= x4 - 2x3 + 5x2 - 4x + 4
a. (2x4 - x3 + 4x - 2) : (2x-1)
b. (2x3 - x2 -5x - 2) : (x-2)
c. (-6a3 + a2 + 26a – 21): (2a – 3)
d. (x4 - 3x2 - 10x - 6) : (x2 - 2x +3)
a: \(=\dfrac{x^3\left(2x-1\right)+2\left(2x-1\right)}{2x-1}=x^3+2\)
b: \(=\dfrac{2x^3-4x^2+3x^2-6x+x-2}{x-2}=2x^2+3x+1\)
d: \(=\dfrac{x^4-2x^3+3x^2+2x^3-4x^2+6x-x^2+2x-3}{x^2-2x+3}=x^2+2x-1\)
x4-x2+10x-25
\(x^4-x^2+10x-25\)
\(=x^4-\left(x^2-10x+25\right)\)
\(=\left(x^2\right)^2-\left(x^2-2\cdot5\cdot x+5^2\right)\)
\(=\left(x^2\right)^2-\left(x-5\right)^2\)
\(=\left[x^2-\left(x-5\right)\right]\left[x^2+\left(x-5\right)\right]\)
\(=\left(x^2-x+5\right)\left(x^2+x-5\right)\)
1/ Thực hiện các phép tính sau: a) (2x - y)(4x2 - 2xy + y2) b) (6x5y2 - 9x4y3 + 15x3y4): 3x3y2 c) (2x3 - 21x2 + 67x - 60): (x - 5) d) (x4 + 2x3 +x - 25):(x2 +5) e) (27x3 - 8): (6x + 9x2 + 4)
a) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-4x^2y+2xy^2-4xy^2+2xy^2-y^3\)
\(=8x^3-8x^2y+4xy^2-y^3\)
b) \(\left(6x^5y^2-9x^4y^3+15x^3y^4\right):3x^3y^2\)
\(=2x^2-3xy+5y^2\)
Bài 1: Phân tích các đa thức sau thành nhân tử
a. 1 - 4x2
b. 8 - 27x3
c. 27 + 27x + 9x 2 + x3
d. 2x3 + 4x2 + 2x
e. x2 - 5x - y2 + 5y
f. x2 - 6x + 9 - y2
g. 10x (x - y) - 6y(y - x)
h. x2 - 4x - 5
i. x4 - y4
Bài 2: Tìm x, biết
a. 5(x - 2) = x - 2
b. 3(x - 5) = 5 - x
c. (x +2)2 - (x+ 2) (x - 2) = 0
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a. A = x2 - 6x + 11
b. B = 4x2 - 20x + 101
c. C = -x2 - 4xy + 5y2 + 10x - 22y + 28
a.
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
b.
\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
c.
\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)
\(=\left(x+3\right)^3\)
d.
\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
e.
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f.
\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
g. 10x(x-y)-6y(y-x)
=10x(x-y)+6y(x-y)
=(x-y)(10x+6y)
h.x2-4x-5
=(x-5)(x+1)
i.x4-y4 = (x2-y2)(x2+y2)
B2.
a.5(x-2)=x-2
⇔5(x-2)-(x-2)=0
⇔4(x-2)=0
⇔x=2
b.3(x-5)=5-x
⇔3(x-5)+(x-5)=0
⇔4(x-5)=0
⇔x=5
c.(x+2)2-(x+2)(x-2)=0
⇔(x+2)[(x+2)-(x-2)]=0
⇔4(x+2)=0
⇔x=-2
phân tích đa thức thành nhân tử
a) x2- x- y2- y
b) x2- 2xy- y2-z2
c) 5x- 5y+ 4x- ay
d) 3x3- x2-21x+ 7
e) x3- 4x2- 8x- 8
f) x3- 5x2- 5x+ 1
g) x2y- xz+ z- y
h) x4- x3+ x2- 1
i) x4- x2+ 10x- 25
a: \(x^2-y^2-x-y\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
f: \(x^3-5x^2-5x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)-5x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-6x+1\right)\)