Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Gia Ân
Xem chi tiết
Phạm Ngọc Bích
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Khách vãng lai đã xóa
Kwalla
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 11 2023 lúc 8:29

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

=>\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

=>\(2\left(ab+bc+ac\right)=0\)

=>ab+bc+ac=0

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

=>\(\dfrac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^3}=\dfrac{3}{abc}\)

=>\(\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3=3\left(abc\right)^2\)

\(\Leftrightarrow\left(ab+bc\right)^3-3\cdot ab\cdot bc\cdot\left(ab+bc\right)+\left(ac\right)^3=3\left(abc\right)^2\)

=>\(\left(-ac\right)^3-3\cdot ab\cdot bc\cdot\left(-ac\right)+\left(ac\right)^3-3\left(abc\right)^2=0\)

=>\(-a^3c^3+a^3c^3+3a^2b^2c^2-3a^2b^2c^2=0\)

=>0=0(đúng)

Bùi Tiến Hùng
Xem chi tiết
Phạm Mỹ Hạnh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 11 2019 lúc 6:01

Ta có:

0 < a < 1 ⇒ a - 1 < 0 ⇒ a(a - 1) < 0 ⇒ a2 - a < 0 (1)

Tương tự:

0 < b < 1 ⇒ b2 - b < 0 (2)

0 < c < 1 ⇒ c2 - c < 0 (3)

Cộng (1); (2); (3) vế theo vế ta được:

a2 + b2 + c2 - a - b - c < 0

⇔ a2 + b2 + c2 < a + b + c

⇔ a2+ b2 + c2 < 2 (do a + b + c = 2)

Phan Hoàng Kim Uyên
Xem chi tiết
Thắng Nguyễn
26 tháng 6 2016 lúc 20:51

a)Ta có:

\(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\)

Do \(\left(a-b\right)^2\ge0\),nên\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

b)Xét \(\left(a+b+c\right)^2+\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\)

Khai triển và rút gọn ta được:\(3\left(a^2+b^2+c^2\right)\)

Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

Trần Thu Ha
Xem chi tiết
Anh Bùi Thị
Xem chi tiết
Trần Hùng
Xem chi tiết
Nguyễn Hải Vanh
25 tháng 8 2023 lúc 13:47

Cần gấp ko bạn

Nếu gấp thì sang web khác thử

phan van bao
Xem chi tiết
tth_new
26 tháng 3 2020 lúc 10:38

Rất khủng khiếp (tại cái chương trình của em nó xấu:v) nhưng nó là một cách chứng minh:

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\frac{27\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2\ge\frac{27\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}\)

Sau khi quy đồng, ta cần chứng minh biểu thức sau đây không âm:

Hiển nhiên đúng vì \(x=min\left\{x,y,z\right\}\)

Khách vãng lai đã xóa