Bài 5: Phép cộng các phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kwalla

cho (a+b+c)2=a2+b2+c2 và a,b,c ≠0. Chứng minh 1/a3+1/b3+1/c3=3/abc

Nguyễn Lê Phước Thịnh
27 tháng 11 2023 lúc 8:29

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

=>\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

=>\(2\left(ab+bc+ac\right)=0\)

=>ab+bc+ac=0

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

=>\(\dfrac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^3}=\dfrac{3}{abc}\)

=>\(\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3=3\left(abc\right)^2\)

\(\Leftrightarrow\left(ab+bc\right)^3-3\cdot ab\cdot bc\cdot\left(ab+bc\right)+\left(ac\right)^3=3\left(abc\right)^2\)

=>\(\left(-ac\right)^3-3\cdot ab\cdot bc\cdot\left(-ac\right)+\left(ac\right)^3-3\left(abc\right)^2=0\)

=>\(-a^3c^3+a^3c^3+3a^2b^2c^2-3a^2b^2c^2=0\)

=>0=0(đúng)


Các câu hỏi tương tự
Xin giấu tên
Xem chi tiết
bùi thị thùy linh
Xem chi tiết
Linh Nhật
Xem chi tiết
Phạm Minh Hoàng
Xem chi tiết
Trịnh Anh Nguyễn
Xem chi tiết
Ly Thaor
Xem chi tiết
Lục Đình Kiêu
Xem chi tiết
co gai buong binh
Xem chi tiết
Ly Thaor
Xem chi tiết