chứng minh các biểu thức sau \(\overline{\in}\) a, b, c
a, \(M=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-a^2-c^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
với a, b, c \(\ne\) 0 và a+b+c= 0
b, \(N=\dfrac{2005a}{ab+2005a+2005}+\dfrac{b}{bc+b+2005}+\dfrac{c}{ac+c+1}\)
với a\(a\times b\times c=2005\)
giúp tớ với tớ cảm ơn nhiều tớ đang cần
Câu a:
Vì \(a+b+c=0\Rightarrow a=-b-c\)
\(\Rightarrow a^2-b^2-c^2=(-b-c)^2-b^2-c^2=(b+c)^2-b^2-c^2\)
\(=2bc\)
\(\Rightarrow \frac{a^2}{a^2-b^2-c^2}=\frac{a^2}{2bc}\). Hoàn toàn tương tự với những phân thức còn lại:
\(\Rightarrow M=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)
Lại có:
\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3\)
\(=-c^3+3abc+c^3=3abc\)
\(\Rightarrow M=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)
Vậy giá trị của biểu thức M không phụ thuộc vào biến $a,b,c$
Câu b:
Thay $2005=abc$ ta có:
\(N=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{ab.ac}{ab(1+ac+c)}+\frac{b}{b(c+1+ac)}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+1+c}{1+ac+c}=1\)
Vậy giá trị của biểu thức $N$ không phụ thuộc vào giá trị biến $a,b,c$
(đpcm)