CÁC AC GIÚP E CÂU NI
Giúp e vs, trong mấy câu này các ac lm giúp e vài câu với
giúp mk câu ni vs::cho các số dương a,b,c thõa mãn ab+bc+ac=1. Tìm giá trị lớn nhất của biểu thức P= 2a/căn(1+a^2) +b/căn(1+b^2)+c/căn(1+c^2)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\frac{2a}{a+b}\cdot\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}\cdot\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}\cdot\frac{c}{2\left(b+c\right)}}\)
\(\le\frac{1}{2}\left(\frac{2a}{a+b}+\frac{2b}{a+b}+\frac{2a}{a+c}+\frac{2c}{a+c}+\frac{b}{2\left(b+c\right)}+\frac{c}{2\left(b+c\right)}\right)\)
\(=\frac{1}{2}\left(2+2+\frac{1}{2}\right)=\frac{9}{4}\)
Áp dụng BĐT Cauchy-Schwarz ta có :
\(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\frac{2a}{a+b}.\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}.\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}.\frac{c}{2\left(b +c\right)}}\)
\(\le\frac{1}{2}\left(\frac{2a}{a+b}+\frac{2b}{a+b}+\frac{2a}{a+c}+\frac{2c}{a+c}+\frac{b}{2\left(b+c\right)}+\frac{c}{2\left(b+c\right)}\right)\)
\(=\frac{1}{2}\left(2+2+\frac{1}{2}\right)=\frac{9}{4}\)
P/s : Mình tự nghĩ chứ không phải mình copy đâu
Cho ∆ABC vuông tại A biết AB = 5cm, AC = 12cm. Vẽ AH vuông góc với BC ( H thuộc BC )
a) Tính BC
b) So sánh các góc của ∆ABC
c) Gọi N là trung điểm của AC, trên tia đối của tia NH lấy điểm I sao cho NH = NI. Chứng minh tam giác AHN và tam giác CIN bằng nhau.
d) Gọi E là trung điểm của HC. Chứng minh tam giác AEI cân
MẤY PN GIÚP MIK LÀM NHA ! THANK YOU VERY MUCH ! ^_< LÀM CÂU D TRƯỚC NHÉ !
a) Theo định lí pitago trong
Trong tam giác vuông ABC có :
BC2 = AB2 + AC2
BC2 =52 + 122 =15+144=169
suy ra : BC = /169 =13 (cm )
b)
Trong tam giác vuông ABC có:
 = 90 độ (tam giác ABC vuông tại A)
GB = GC = 45 độ ( tính chất của tam giác vuông)
suy ra : Â >GB = GC
c)
Xét tam giác AHN và tam giác CIN có :
GN1 = GN2 ( đối đỉnh )
NH = NI ( gt)
NA = NC ( N là trung điểm của AC )
Suy ra :tam giác AHN = tam giác CIN ( c-g-c)
d)
Suy ra :GH1 = GC1( Tam giác AHN = Tam giác CIN)
Suy ra :GH2 = GC2 = 45 độ
Xét tam giác AHE và tam giác ICE có :
GH = GC ( C/M trên )
AH = CI ( Tam giác AHN = tam giác CIN )
HE = CE ( E là trung điểm của HC )
suy ra : tam giác AHE = tam giác ICE ( c-g-c)
suy ra :
AE = IE ( 2 cạnh tương ứng )
Suy ra :
tam giác AEI cân tại I
Mình làm vậy ko biết có đúng ko nữa ? nhưng mình đoán là zậy đấy
Trên các cạnh bên AC và BC của tam giác cân ABC ( CA = CB ), lấy các điểm M, N sao cho CM + CN = AC. Gọi D, E, F lần lượt là trung điểm của AC, BC, MN.
Chứng minh D, E, F thẳng hàng.
( Giúp mình câu này nhé >-< )
https://www.hocde.vn/books/listQuestion?id=5263
Tam giác ABC cân tại A => AB =AC
F,E là trung điểm của AB,AC => AF=FB=EC=AC=Ab/2=AC/2
=>EF là đường trung bình của tam giác ABC => EF song song với BC => BCEF là hình thang.Mà 2 cạnh bên BF = BC (CMT) => hình thang BCEF là hình thang cân
ta có: BC song song với EF (cmt) mà D thuộc BC => BD song song với EF (1)
MÀ BD = DC = BC/2 (GT) và EF=BC/2(È là đường trung bình của tam giác ABC) (2)
(1) và (2) => BDEF là hình bình hành
Tam giác MGN có F,E là trung điểm của MG,NG => EF là đường trung bình của tam giác MNG => EF song song và =MN/2
mà EF song song và = BC/2 (CMT)
=>BCMN là hình bình hành
mà G là trung điểm của 2 đường chéo MC , BN => BCMN là hình chữ nhật
P/s: Tham kảo nhé bn, đừng chép nguyên vào sai đấy
cho hình bình hành ABCD (ab>ac). Evà K lần lượt là trung điểm CD và AB. BD cắt AE, AC, CK lần lượt tại N ,O,I
a)AECK là hình bình hành
b)điểm E đối xứng với K qua O
c)DN =NI =IB
d)AE=3 KI
làm câu b, d
câu d chỉ cần xem đề bài đúng ko
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
cho tam giác abc vuông tại A.gọi M là 1 điểm thuộc cạnh AC(M khác AC).đường tròn đường kínhMC,C cắt BC tại N và tia BM tại I.
a,cm : ABNM,MNCI nội tiếp
b, cm:MN là phân giác của góc ANI
c cm: NI vuông với AC
giải giúp mình câu c
Lời giải:
a) $\widehat{MNC}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow \widehat{BNM}=90^0$
$\Rightarrow \widehat{BNM}+\widehat{BAM}=90^0+90^0=180^0$
Tứ giác $ABNM$ có tổng 2 góc đối bằng $180^0$ nên là tgnt (đpcm)
$MNCI$ nội tiếp thì hiển nhiên rồi.
b) $\widehat{MIC}=90^0$ (góc nt chắn nửa đường tròn)
Vì $MNCI, ABNM$ nội tiếp nên:
$\widehat{MNI}=\widehat{MCI}=90^0-\widehat{IMC}=90^0-\widehat{BMA}=\widehat{ABM}=\widehat{ANM}$
Do đó $NM$ là tia phân giác $\widehat{ANI}$
c) Đề sai (nhìn hình)
làm thí nghiệm cọ xát một miếng ni lông xuống cạnh bàn rồi đưa gần các vụn giấy và cho biết hiện tượng xảy ra. ( giúp e gấp vs ạ )
moi ng giúp e lm bài ni với!!!
các ac giúp e với ạ
e cảm ơn ac nhiều ạ
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^8}\)
\(\Rightarrow2A-A=1-\dfrac{1}{2^9}\)
\(\Rightarrow A=1-\dfrac{1}{2^9}=\dfrac{511}{512}\)
\(\Rightarrow\left(a+b\right)_{min}=511+512=1023\)