Lời giải:
a) $\widehat{MNC}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow \widehat{BNM}=90^0$
$\Rightarrow \widehat{BNM}+\widehat{BAM}=90^0+90^0=180^0$
Tứ giác $ABNM$ có tổng 2 góc đối bằng $180^0$ nên là tgnt (đpcm)
$MNCI$ nội tiếp thì hiển nhiên rồi.
b) $\widehat{MIC}=90^0$ (góc nt chắn nửa đường tròn)
Vì $MNCI, ABNM$ nội tiếp nên:
$\widehat{MNI}=\widehat{MCI}=90^0-\widehat{IMC}=90^0-\widehat{BMA}=\widehat{ABM}=\widehat{ANM}$
Do đó $NM$ là tia phân giác $\widehat{ANI}$
c) Đề sai (nhìn hình)