a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a) Tứ giác AECK là hình bình hành.
b) Ba điểm E, O, K thẳng hàng.
c) DN = NI = IB
d) AE = 3KI
cho hình bình hành ABCD (ab>ac). Evà K lần lượt là trung điểm CD và AB. BD cắt AE, AC, CK lần lượt tại N ,O,I
b)điểm E đối xứng với K qua O
Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a) Tứ giác AECK là hình bình hành.
b) Ba điểm E, O, K thẳng hàng.
c) DN = NI = IB d) AE = 3KI
Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a) Tứ giác AECK là hình bình hành.
b) Ba điểm E, O, K thẳng hàng.
c) DN = NI = IB
Cho hình bình hành ABCD. Gọi E,K lần lượt là trung điểm của CD và AB. Đường chéo BD cắt AE,AC,CK lần lượt tại N,O,M
a,cm AECK là hình bình hành
b,cm 3 điểm O,E,K thẳng hàng
c,cm DN=NM=MB
d, cm AE=3KM
Cho hình bình hành ABCD. Gọi E, K lần lượt là trung điểm của CD và AB. Đường chéo BD cắt AE, AC, CK lần lượt tại N, O, M
a) Chứng minh AECK là hình bình hành
b) Chứng minh ba điểm O, E, K thẳng hàng
c) Chứng minh DN = NM = MB
d) Chứng minh AE = 3KM
cho hình bình hành ABCD (AB>AD) gọi E và K lần lượt là trung điểm của CD và AB,BD cắt AC tại O
chứng minh rằng:a/AECK là hình bình hành
b/ ba điểm E,O,K thẳng hàng
Bài 1: Cho hình bình hành ABCD (AC<BD). Gọi M và N lần lượt là hình chiếu của A và C trên BD.
a) CMR: DM=NB
b) CMR: Tứ giác AMCN là hình bình hành
c) Gọi E đối xứng với A qua BD. CMR: Tứ giác BCED là hình thang cân.
d) Gọi I, K là giao điểm của CD với AE, BE. CMR: KI=KC
Bài 2: Cho ∆ABC cân tại A có M, N lần lượt là trung điểm của BC và AC. Đường thẳng MN cắt đường thẳng song song với BC kẻ từ A tại D.
a) CMR: Tứ giác ABMD là hình bình hành
b) So sánh MD với AC
c) Tứ giác ADCM là tứ giác đặc biệt nào?
Bài 1 mình đã làm được bài câu a) và câu b). Khẳng định là hai bài không hề sai đề nhé.
Bài 1: Cho hình bình hành ABCD , đường chéo BD . Kẻ AH và CK vuông góc với BD tại H và K . Chứng minh tứ giác AHCK là hình bình hành. Bài 2: Cho hình bình hành ABCD có M N, lần lượt là trung điểm của AB CD , . AN và CM cắt BD lần lượt tại E và F . a) Chứng minh AMCN là hình bình hành. ( Hình 6) b) Từ F kẻ đường thẳng song song với AB cắt AN tại G. Chứng minh BF FE ED . Bài 3: Cho tam giác ABC cân tại A , lấy điểm D trên cạnh AB , điểm E trên cạnh AC sao cho BD CE . a) Tứ giác BDEC là hì gì? Vì sao? b) Các điểm D E, ở vị trí nào thì BD DE EC