cho hình bình hành ABCD (ab>ac). Evà K lần lượt là trung điểm CD và AB. BD cắt AE, AC, CK lần lượt tại N ,O,I
a)AECK là hình bình hành
b)điểm E đối xứng với K qua O
c)DN =NI =IB
d)AE=3 KI
làm câu b, d
câu d chỉ cần xem đề bài đúng ko
Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a) Tứ giác AECK là hình bình hành.
b) Ba điểm E, O, K thẳng hàng.
c) DN = NI = IB d) AE = 3KI
Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a) Tứ giác AECK là hình bình hành.
b) Ba điểm E, O, K thẳng hàng.
c) DN = NI = IB
Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a) Tứ giác AECK là hình bình hành.
b) Ba điểm E, O, K thẳng hàng.
c) DN = NI = IB
d) AE = 3KI
Cho hình bình hành ABCD. Gọi E,K lần lượt là trung điểm của CD và AB. Đường chéo BD cắt AE,AC,CK lần lượt tại N,O,M
a,cm AECK là hình bình hành
b,cm 3 điểm O,E,K thẳng hàng
c,cm DN=NM=MB
d, cm AE=3KM
Cho hình bình hành ABCD. Gọi E, K lần lượt là trung điểm của CD và AB. Đường chéo BD cắt AE, AC, CK lần lượt tại N, O, M
a) Chứng minh AECK là hình bình hành
b) Chứng minh ba điểm O, E, K thẳng hàng
c) Chứng minh DN = NM = MB
d) Chứng minh AE = 3KM
Cho hình bình hành ABCD, gọi E,F lần là trung điểm AD, BC. AC cắt BD tại O và cắt BE, DF lần lượt tại P,Q.
a) CM: AP=PQ=QC
b)M thuộc CD, I, K lần lượt là điểm đối xứng M qua E,F. CM: I,K thuộc AB
c) Cm: AI+AK không đổi khi M thuộc AB
cho hình bình hành ABCD có cạnh AB > BC có K,E lần lượt là trung điểm AB và CD, cho BD cắt AC tại O
a. chứng minh AKCE là hình bình hành
b. chứng minh K,O,E thẳng hàng với nhau
cho hình bình hành ABCD (AB>AD) gọi E và K lần lượt là trung điểm của CD và AB,BD cắt AC tại O
chứng minh rằng:a/AECK là hình bình hành
b/ ba điểm E,O,K thẳng hàng