Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mèo Dương
Xem chi tiết
YangSu
9 tháng 2 2023 lúc 21:13

\(5,\dfrac{4}{x-2}+\dfrac{x}{x+1}-\dfrac{x^2-2}{\left(x-2\right)\left(x+1\right)}=0\left(dkxd:x\ne2;-1\right)\)

\(\Rightarrow4\left(x+1\right)+x\left(x-2\right)-x^2-2=0\)

\(\Rightarrow4x+4+x^2-2x-x^2-2=0\)

\(\Rightarrow2x+2=0\)

\(\Rightarrow x=-1\left(loai\right)\)

Vậy \(S=\varnothing\)

YangSu
9 tháng 2 2023 lúc 21:23

\(4,\dfrac{x}{x-3}-\dfrac{1}{x+2}=0\left(dkxd:x\ne3;-2\right)\)

\(\Rightarrow x\left(x+2\right)-\left(x-3\right)=0\)

\(\Rightarrow x^2+3x-x+3=0\)

\(\Rightarrow x^2+2x+3=0\)

\(\Rightarrow S=\varnothing\)

Mèo Dương
9 tháng 2 2023 lúc 21:50

giúp em tl những câu tl trên vs

Ju Moon Adn
Xem chi tiết
Nhã Doanh
8 tháng 2 2018 lúc 20:15

h.

\(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)

\(\Leftrightarrow\dfrac{2-x}{2002}+1-2=\dfrac{1-x}{2003}+1+1-\dfrac{x}{2004}-2\)

\(\Leftrightarrow\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)

\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)

\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)

Vì: \(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\ne0\)

Suy ra: 2004 - x = 0

Vậy x = 2004

lê thị hương giang
8 tháng 2 2018 lúc 20:42

\(a,\dfrac{x-23}{24}+\dfrac{x-23}{25}=\dfrac{x-23}{26}+\dfrac{x-23}{27}\)

\(\Leftrightarrow\dfrac{x-23}{24}+\dfrac{x-23}{25}-\dfrac{x-23}{26}-\dfrac{x-23}{27}=0\)

\(\Leftrightarrow\left(x-23\right)\left(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\right)=0\)

\(\Leftrightarrow x-23=0\) ( vì \(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\ne0\) )

\(\Leftrightarrow x=23\)

Vậy pt có tập nghiệm S = { 23 }

\(b,\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)

\(\Leftrightarrow\dfrac{x+2+98}{98}+\dfrac{x+3+97}{97}-\dfrac{x+4+96}{96}-\dfrac{x+5+95}{95}=0\)

\(\Leftrightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}-\dfrac{x+100}{96}-\dfrac{x+100}{95}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)

\(\Leftrightarrow x+100=0\)

\(\Leftrightarrow x=-100\)

Vậy pt có tập nghiệm S = { 100 }

\(c,\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\)

\(\Leftrightarrow\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)

\(\Leftrightarrow\dfrac{x+1+2004}{2004}+\dfrac{x+2+2003}{2003}-\dfrac{x+3+2002}{2002}-\dfrac{x+4+2001}{2001}=0\)

\(\Leftrightarrow\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}-\dfrac{x+2005}{2002}-\dfrac{x+2005}{2001}=0\)

\(\Leftrightarrow\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)=0\)

\(\Leftrightarrow x+2005=0\)

\(\Leftrightarrow x=-2005\)

Vậy pt có tập nghiệm S = { 2005 }

\(d,\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)

\(\Leftrightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)

\(\Leftrightarrow\dfrac{201-x+99}{99}+\dfrac{203-x+97}{97}+\dfrac{205-x+95}{95}=0\)

\(\Leftrightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)

\(\Leftrightarrow300-x=0\)

\(\Leftrightarrow x=300\)

Vậy pt có tập nghiệm S = { 300 }

\(e,\dfrac{x-45}{55}+\dfrac{x-47}{53}=\dfrac{x-55}{45}+\dfrac{x-53}{47}\)

\(\Leftrightarrow\dfrac{x-45}{55}-1+\dfrac{x-47}{53}-1=\dfrac{x-55}{45}-1+\dfrac{x-53}{47}-1\)

\(\Leftrightarrow\dfrac{x-45-55}{55}+\dfrac{x-47-53}{53}-\dfrac{x-55-45}{45}-\dfrac{x-53-47}{47}=0\)

\(\Leftrightarrow\dfrac{x-100}{55}+\dfrac{x-100}{53}-\dfrac{x-100}{45}-\dfrac{x-100}{47}=0\)

\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{55}+\dfrac{1}{53}-\dfrac{1}{45}-\dfrac{1}{47}\right)=0\)

\(\Leftrightarrow x-100=0\)

\(\Leftrightarrow x=100\)

Vậy pt có tập nghiệm S = { 100 }

\(f,\dfrac{x+1}{9}+\dfrac{x+2}{8}=\dfrac{x+3}{7}+\dfrac{x+4}{6}\)

\(\Leftrightarrow\dfrac{x+1}{9}+1+\dfrac{x+2}{8}+1=\dfrac{x+3}{7}+1+\dfrac{x+4}{6}+1\)

\(\Leftrightarrow\dfrac{x+10}{9}+\dfrac{x+10}{8}-\dfrac{x+10}{7}-\dfrac{x+10}{6}=0\)

\(\Leftrightarrow\left(x+10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}-\dfrac{1}{7}-\dfrac{1}{6}\right)=0\)

\(\Leftrightarrow x+10=0\)

\(\Leftrightarrow x=-10\)

Vậy pt có tập nghiệm S = { 10 }

\(h,\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)

\(\Leftrightarrow\dfrac{2-x}{2002}=\dfrac{1-x}{2003}+\dfrac{-x}{2004}+1\)

\(\Leftrightarrow\dfrac{2-x}{2002}+1=\dfrac{1-x}{2003}+1+\dfrac{-x}{2004}+1\)

\(\Leftrightarrow\dfrac{2-x+2002}{2002}-\dfrac{1-x+2003}{2003}-\dfrac{2004-x}{2004}=0\)

\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)

\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)

\(\Leftrightarrow2004-x=0\)

\(\Leftrightarrow x=2004\)

Vậy pt có tập nghiệm S = { 2004 }

\(g,\dfrac{x+2}{98}+\dfrac{x+4}{96}=\dfrac{x+6}{94}+\dfrac{x+8}{92}\)

\(\Leftrightarrow\dfrac{x+2}{98}+1+\dfrac{x+4}{96}+1=\dfrac{x+6}{94}+1+\dfrac{x+8}{92}+1\)

\(\Leftrightarrow\dfrac{x+100}{98}+\dfrac{x+100}{96}-\dfrac{x+100}{94}-\dfrac{x+100}{92}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{96}-\dfrac{1}{94}-\dfrac{1}{92}\right)=0\)

\(\Leftrightarrow x+100=0\)

\(\Leftrightarrow x=-100\)

Vậy pt có tập nghiệm S = { -100 }

Nhã Doanh
8 tháng 2 2018 lúc 20:08

a.

\(\dfrac{x-23}{24}+\dfrac{x-23}{25}=\dfrac{x-23}{26}+\dfrac{x-23}{27}\)

\(\Leftrightarrow\left(x-23\right)\left(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\right)=0\)

Vì: \(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\ne0\)

Suy ra x - 23 = 0

\(\Leftrightarrow x=23\)

Cá Lệ Kiều
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 9 2021 lúc 10:14

\(ĐK:x\ge0;x\ne4\\ P=\dfrac{5x+10\sqrt{x}-\left(3-\sqrt{x}\right)\left(\sqrt{x}-2\right)-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{5x+10\sqrt{x}-5\sqrt{x}+6+x-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{5\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

Lấp La Lấp Lánh
23 tháng 9 2021 lúc 10:16

\(P=\dfrac{5\sqrt{x}}{\sqrt{x}-2}-\dfrac{3-\sqrt{x}}{\sqrt{x}+2}+\dfrac{6x}{4-x}\left(đk:x\ge0,x\ne4\right)\)

\(=\dfrac{5\sqrt{x}\left(\sqrt{x}+2\right)-\left(3-\sqrt{x}\right)\left(\sqrt{x}-2\right)-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{5x+10\sqrt{x}+x-5\sqrt{x}+6-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{5\sqrt{x}+6}{x-4}\)

Nguyễn Công Vinh
Xem chi tiết
Bé Cáo
16 tháng 3 2022 lúc 23:41

Bài 3

\(\dfrac{55}{23}+\dfrac{-22}{23}\le x\le\dfrac{1}{5}-\dfrac{-1}{6}+\dfrac{79}{30}\)

\(=\dfrac{33}{23}\)\(\le x\le\dfrac{90}{30}\)

\(=\dfrac{33}{23}\le x\le3\)

Mà \(x\in Z\) \(\Rightarrow\)\(x=2\)

Có 1 giá trị thỏa mãn 

Chọn A

Bài 4

\(\dfrac{-11}{12}< \dfrac{5}{x}< \dfrac{-11}{15}\)

Chọn D

Bài 5

\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(M=1-\dfrac{1}{100}\)

\(M=\dfrac{100}{100}-\dfrac{1}{100}\)

\(M=\dfrac{99}{100}\)

CHọn C

kodo sinichi
17 tháng 3 2022 lúc 6:05

A
D
C

....
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
16 tháng 6 2021 lúc 23:11

a) ĐK: \(x^2+7x+7\ge0\)

Đặt \(a=\sqrt{x^2+7x+7}\)  \(\left(a\ge0\right)\)

PT \(\Rightarrow3a^2-3+2a=2\) \(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2+7x+7=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)  (Thỏa mãn) 

Vậy ...

b) ĐK: \(x^2-6x+6\ge0\)

Đặt \(a=\sqrt{x^2-6x+6}\)  \(\left(a\ge0\right)\)

PT \(\Rightarrow a^2+3=4a\) \(\Leftrightarrow\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)  (Thỏa mãn)

+) Với \(a=3\) \(\Rightarrow x^2-6x+6=9\) \(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{matrix}\right.\)  (Thỏa mãn)

+) Với \(a=1\) \(\Rightarrow x^2-6x+6=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)  (Thỏa mãn)

  Vậy ...

 

 

  

Lê Thị Thục Hiền
16 tháng 6 2021 lúc 23:22

c)C1: Áp dụng bđt AM-GM \(\Rightarrow VT\ge2>\dfrac{7}{4}\)

=> Dấu = ko xảy ra hay pt vô nghiệm

C2: Đk:\(x>0\)

Đặt \(a=\sqrt{\dfrac{x^2+x+1}{x}}\left(a>0\right)\) \(\Rightarrow\dfrac{1}{a}=\sqrt{\dfrac{x}{x^2+x+1}}\)

Pttt: \(a+\dfrac{1}{a}=\dfrac{7}{4}\Leftrightarrow4a^2-7a+4=0\) 

\(\Delta =-15<0 \) => Pt vô nghiệm

Vậy...

d) Đk: \(x\le-8;x\ge0\)

Đặt \(t=\sqrt{x\left(8+x\right)}\left(t\ge0\right)\)

Pttt: \(t^2-3=2t\Leftrightarrow t^2-2t-3=0\Leftrightarrow\left[{}\begin{matrix}t=3\left(tm\right)\\t=-1\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x\left(8+x\right)}=3\Leftrightarrow x^2+8x-9=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\) (tm)

Vậy...

Nghiêm Thị Hồng Nhung
Xem chi tiết
Mỹ Duyên
26 tháng 5 2017 lúc 14:12

a) ĐKXĐ: \(x\ne2;4\)

\(\dfrac{x-3}{x-2}-\dfrac{x-2}{x-4}\) = \(\dfrac{16}{5}\)

<=> \(\dfrac{\left(x-3\right)\left(x-4\right)-\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}\) = \(\dfrac{16}{5}\)

<=> \(\dfrac{x^2-7x+12-x^2+4x-4}{\left(x-2\right)\left(x-4\right)}-\dfrac{16}{5}\) = 0

<=> \(\dfrac{5\left(-3x+8\right)}{5\left(x-2\right)\left(x-4\right)}-\dfrac{16\left(x^2-6x+8\right)}{5\left(x-2\right)\left(x-4\right)}\) = 0

=> \(-15x+40-16x^2+96x-128\) = 0

<=> \(-\left(16x^2-81x+88\right)\) = 0

<=> \(16x^2-81x+88\) = 0

<=> \(\left(16x^2-81x+\dfrac{6561}{64}\right)-\dfrac{929}{64}\) = 0

<=> \(\left(4x-\dfrac{81}{8}\right)^2\) = \(\dfrac{929}{64}\)

<=> \(\left[{}\begin{matrix}4x-\dfrac{81}{8}=\sqrt{\dfrac{929}{64}}\\4x-\dfrac{81}{8}=-\sqrt{\dfrac{929}{64}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\dfrac{81+\sqrt{929}}{32}\\x=\dfrac{81-\sqrt{929}}{32}\end{matrix}\right.\)

Vậy .......................................... ( số xấu nhỉ!)

Mỹ Duyên
26 tháng 5 2017 lúc 14:31

b) \(2x^2-6x+1\) = 0

<=> \(2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{7}{2}\) = 0

<=> \(2\left(x-\dfrac{3}{2}\right)^2\) = \(\dfrac{7}{2}\)

<=> \(\left(x-\dfrac{3}{2}\right)^2\) = \(\dfrac{7}{4}\)

<=> \(\left[{}\begin{matrix}x-\dfrac{3}{2}=\sqrt{\dfrac{7}{4}}\\x-\dfrac{3}{2}=-\sqrt{\dfrac{7}{4}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{7}}{2}\\x=\dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\)

Vậy .............................

c) \(3x^2+12x-66\) = 0

<=> \(3\left(x^2+4x+4\right)-78\) = 0

<=> \(3\left(x+2\right)^2\) = 78

<=> \(\left(x+2\right)^2\) = 26

<=> \(\left[{}\begin{matrix}x+2=\sqrt{26}\\x+2=-\sqrt{26}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-2+\sqrt{26}\\x=-2-\sqrt{26}\end{matrix}\right.\)

Vậy .................................

P/s: Yahoooooooooooooo.......xong rồi!

Dưa Trong Cúc
Xem chi tiết
Krissy
14 tháng 1 2019 lúc 19:20

a, \(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5\)

\(\Leftrightarrow\left(\dfrac{59-x}{49}+1\right)+\left(\dfrac{57-x}{43}+1\right)+\left(\dfrac{55-x}{45}+1\right)+\left(\dfrac{53-x}{47}+1\right)+\left(\dfrac{51-x}{49}+1\right)=0\)

\(\Leftrightarrow\dfrac{100-x}{45}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}+\dfrac{100-x}{49}=0\)

\(\Leftrightarrow\left(100-x\right).\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49}\right)=0\)

\(\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49}\right)\ne0\)

\(\Rightarrow100-x=0\)

\(\Rightarrow x=100\)

Vậy \(S=\left\{100\right\}\)

Krissy
14 tháng 1 2019 lúc 19:25

b, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(\Leftrightarrow6x^2-5x+3=2x-9x+6x^2\)

\(\Leftrightarrow6x^2-5x+3=-7x+6x^2\)

\(\Leftrightarrow6x^2-5x+3+7x-6x^2=0\)

\(\Leftrightarrow2x+3=0\)

\(\Leftrightarrow2x=-3\)

\(\Leftrightarrow x=\dfrac{-3}{2}\)

Vậy \(S=\left\{\dfrac{-3}{2}\right\}\)

Krissy
14 tháng 1 2019 lúc 19:33

c,\(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)

\(\Leftrightarrow\dfrac{10x-40}{20}-\dfrac{6+4x}{20}=\dfrac{20x}{20}+\dfrac{4-4x}{20}\)

\(\Leftrightarrow\dfrac{6x-46}{20}=\dfrac{16x+4}{20}\)

\(\Leftrightarrow6x-46=16x+4\)

\(\Leftrightarrow6x-46-16x-4=0\)

\(\Leftrightarrow-10x-50=0\)

\(\Leftrightarrow-10x=50\)

\(\Leftrightarrow x=-5\)

Vậy \(S=\left\{-5\right\}\)

Hạ Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2022 lúc 21:09

a: \(\Leftrightarrow4\left(2x+1\right)-3\left(6x-1\right)=2x+1\)

=>8x+4-18x+3=2x+1

=>-10x+7=2x+1

=>-12x=-6

hay x=1/2

b: \(\Leftrightarrow4x^2-12x+7x-21-x^2=3x^2+6x\)

=>5x-21=6x

=>-x=21

hay x=-21

Dương Nguyễn
Xem chi tiết
Khôi Bùi
16 tháng 7 2021 lúc 21:21

\(\sqrt{3}cosx+2sin^2\left(\dfrac{x}{2}-\pi\right)=1\) 

\(\Leftrightarrow\sqrt{3}cosx+2sin^2\dfrac{x}{2}=1\)

\(\Leftrightarrow\sqrt{3}cosx-cosx=0\Leftrightarrow cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) ( k thuộc Z )

Vậy ... 

Nguyễn Việt Lâm
16 tháng 7 2021 lúc 21:28

22.

Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)

\(3tan^2x+2tanx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{1}{3}\right)+k\pi\end{matrix}\right.\)

Nghiệm dương nhỏ nhất của pt là: \(x=arctan\left(\dfrac{1}{3}\right)\)

Ngô Thành Chung
16 tháng 7 2021 lúc 21:33

22. PT đã cho tương đương

3 - 4cos2x + 2 sinxcosx = 0

⇔ 3 - 2 - 2cos2x + sin2x = 0

⇔ 1 - 2cos2x + sin2x = 0

⇔ 1 + sin2x = 2cos2x

⇔ sin\(\dfrac{\pi}{2}\) + sin2x = 2cos2x

⇔ \(2sin\left(\dfrac{\pi}{4}+x\right).cos\left(\dfrac{\pi}{4}-x\right)\) = 2cos2x

Do \(\left(\dfrac{\pi}{4}-x\right)+\left(\dfrac{\pi}{4}+x\right)=\dfrac{\pi}{2}\) 

⇒ \(sin\left(\dfrac{\pi}{4}+x\right)=cos\left(\dfrac{\pi}{4}-x\right)\)

Vậy sin2\(\left(x+\dfrac{\pi}{4}\right)\) = cos2x

Cái này là hiển nhiên ????

 

 

 

 

Phạm Ngọc Minh Thư
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 13:41

\(\dfrac{2}{36a^2b^2-1}=\dfrac{2}{\left(6ab-1\right)\left(6ab+1\right)}\\ \dfrac{1}{6ab+1}=\dfrac{6ab-1}{\left(6ab-1\right)\left(6ab+1\right)};\dfrac{1}{6ab-1}=\dfrac{6ab+1}{\left(6ab-1\right)\left(6ab+1\right)}\)

\(\dfrac{x}{x^3-27}=\dfrac{x\left(x-3\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\\ \dfrac{2x}{x^2-6x+9}=\dfrac{2x\left(x^2+3x+9\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\\ \dfrac{1}{x^2+3x+9}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)

\(\dfrac{x^2-x}{x^2-1}=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x}{x+1}=\dfrac{x\left(x+1\right)}{\left(x+1\right)^2}\\ \dfrac{3x}{x^3+2x^2+x}=\dfrac{3x}{x\left(x^2+2x+1\right)}=\dfrac{3}{\left(x+1\right)^2}\\ 2x=\dfrac{2x\left(x+1\right)^2}{\left(x+1\right)^2}\)