Giải phương trình \(x^2+x-9=\sqrt{x^2-8}+\sqrt{x-2}+\sqrt{\left(x^2-8\right)\left(x-2\right)}\)
Giải Phương Trình
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{5x-6}-3=0\)
Giải phương trình sau:
\(\sqrt{x^2-4x-8}+\sqrt{x^2+2\left(1-\sqrt{3}\right)x+8}+\sqrt{x^2+2\left(1+\sqrt{3}\right)x+8}=6\sqrt{2}\).
Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!
Giải phương trình:
\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\)
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\left(đk:x\ge0\right)\)
\(\Leftrightarrow x+3+4x+4\sqrt{x\left(x+3\right)}=4+x\left(x+3\right)+4\sqrt{x\left(x+3\right)}\)
\(\Leftrightarrow5x+3=4+x^2+3x\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\left(tm\right)\)
giải phương trình :
a, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
b,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
c, \(2x^2-5x+22=5\sqrt{x^3-11x +20}\)
d, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}=6x\)
Giải phương trình:
a) \(\sqrt{4-3x}=8\)
b) \(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)
c) \(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\)
Sửa lại câu c) đặt \(\sqrt{x}+1=\)t \(\Rightarrow\left[2\left(t+\dfrac{1}{2}\right)\right]\left(t-3\right)\)=7⇒\(\left\{{}\begin{matrix}t=3\\t=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\x=\dfrac{9}{4}\end{matrix}\right.\)
a) \(\left(\sqrt{4-3x}\right)^2=8^2\)\(\Leftrightarrow4-3x=64\Rightarrow x=-20\)
b) \(\sqrt{4x-8}+1=12\sqrt{\dfrac{x-2}{9}}\Leftrightarrow2\sqrt{x-2}+1\)\(=\left(12\sqrt{\left(x-2\right).\dfrac{1}{9}}\right)\)
\(\Leftrightarrow2t+1=12.\dfrac{1}{3}t\) (Đặt t = \(\sqrt{x-2}\))
\(\Rightarrow t=\dfrac{1}{2}\) \(\Rightarrow\sqrt{x-2}=\dfrac{1}{2}\)\(\Rightarrow x=\dfrac{9}{4}\)
c) pt\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x}+1=7\\\sqrt{x}-2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\x=4\end{matrix}\right.\)
a) Ta có: \(\sqrt{4-3x}=8\)
\(\Leftrightarrow4-3x=64\)
\(\Leftrightarrow3x=4-64=-60\)
hay x=-20
b) Ta có: \(\sqrt{4x-8}-12\cdot\sqrt{\dfrac{x-2}{9}}=-1\)
\(\Leftrightarrow2\cdot\sqrt{x-2}-12\cdot\dfrac{\sqrt{x-2}}{3}=-1\)
\(\Leftrightarrow-2\cdot\sqrt{x-2}=-1\)
\(\Leftrightarrow\sqrt{x-2}=\dfrac{1}{2}\)
\(\Leftrightarrow x-2=\dfrac{1}{4}\)
hay \(x=\dfrac{9}{4}\)
Giải phương trình
a,\(\sqrt{4-3x}=8\)
b,\(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)
c,\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\)
a: Ta có: \(\sqrt{4-3x}=8\)
\(\Leftrightarrow4-3x=64\)
\(\Leftrightarrow3x=-60\)
hay x=-20
b: ta có: \(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)
\(\Leftrightarrow2\sqrt{x-2}-12\cdot\dfrac{\sqrt{x-2}}{3}=-1\)
\(\Leftrightarrow x-2=\dfrac{1}{4}\)
hay \(x=\dfrac{9}{4}\)
\(\left\{{}\begin{matrix}8>0\left(luondung\right)\\4-3x=64\end{matrix}\right.\) \(\Leftrightarrow x=-20\left(ktm\right)\)
Giải phương trình: \(x^2+8x+9=\) \(\left(x+8\right)\)\(\sqrt{x^2+9}\)
Đặt \(\sqrt{x^2+9}=t>0\) ta được:
\(t^2+8x=\left(x+8\right)t\Leftrightarrow t^2-\left(x+8\right)t+8x=0\)
\(\Leftrightarrow t^2-tx-8t+8x=0\)
\(\Leftrightarrow t\left(t-x\right)-8\left(t-x\right)=0\)
\(\Leftrightarrow\left(t-x\right)\left(t-8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+9}=x\left(x\ge0\right)\\\sqrt{x^2+9}=8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+9=x^2\left(vn\right)\\x^2=55\end{matrix}\right.\)
\(\Rightarrow x=\pm\sqrt{55}\)
Giải phương trình:
a)\(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+6}
\)
b) \(3\left(x-2\right)^2\left(x+1\right)+2\sqrt{x^3-3x^2+3}-8=0\)
Giải phương trình: \(\left(8-\sqrt{5x-x^2}\right)\cdot\left(\sqrt{x}-\sqrt{5-x}\right)=4x-10\)
ĐKXĐ: \(0\le x\le5\).
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{5-x}=b\end{matrix}\right.\left(a,b\ge0\right)\).
PT đã cho tương đương với: \(\left(8-ab\right)\left(a-b\right)=2\left(a-b\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\ab=6\end{matrix}\right.\).
+) \(a=b\Leftrightarrow\sqrt{x}=\sqrt{5-x}\Leftrightarrow x=2,5\left(TMĐK\right)\).
+) \(ab=6\Leftrightarrow\sqrt{x\left(5-x\right)}=6\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(TMĐK\right)\\x=3\left(TMĐK\right)\end{matrix}\right.\).
Vậy...
ĐK: \(0\le x\le5\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{5-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(pt\Leftrightarrow\left(8-ab\right)\left(a-b\right)=2\left(a^2-b^2\right)\)
\(\Leftrightarrow\left(a-b\right)\left(8-ab-2a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\ab+2a+2b=8\end{matrix}\right.\)
TH1: \(a=b\Leftrightarrow\sqrt{x}=\sqrt{5-x}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)
TH2: \(ab+2a+2b=8\)
\(\Leftrightarrow\sqrt{5x-x^2}+2\sqrt{5-x}+2\sqrt{x}=8\)
\(\Leftrightarrow\left(\sqrt{5-x}+\sqrt{x}-3\right)\left(\sqrt{5-x}+\sqrt{x}+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5-x}+\sqrt{x}=-7\left(l\right)\\\sqrt{5-x}+\sqrt{x}=3\end{matrix}\right.\)
\(\sqrt{5-x}+\sqrt{x}=3\)
\(\Leftrightarrow5+2\sqrt{5x-x^2}=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
Vậy ...