cho tam giác abc cân tại a hai đường cao BD và CE cách nhau tại h.Tia AH cách BC ở E.
CM : E là trung điểm của BC
CM : Tam giác IEF cân
Cho tam giác ABC cân tại A(góc A lớn hơn 90 độ) đường cao BD và CE cắt nhau tại H
a,Chứng minh tam giác BHC cân và AH đi qua trung điểm của BC
b,Tìm điểm M sao cho M cách đều 2 cạnh AB,AC và M cách đều 2 đỉnh E,C
Cho Δ ABC cân tại A (góc A<900).Hai đường cao BD và CE cắt nhau tại H.Tia AH cắt BC tại I
a.Chứng minh rằng ΔABD=ΔACE.
b.Chứng minh I là trung điểm của BC.
Bạn tự vẽ hình ik nha
a. Xét tam giác ABD và tam giác ACE có:
góc D = góc E = 90* (gt)
AB = AC (gt)
góc A chung
=> tg ABD = tg ACE (c. huyền-g. nhọn)
b. Vì H là giao điểm của 2 dường cao BD và CE
Nên AH cũng là đường cao cùa tg ABC hay AH vuông góc BC
Do tg ABC là tam giác cân => AI là đường cao đồng thời cũng là dường trung tuyến => BI = CI => I là trung điểm của BC
c.Ta có: góc ACE = góc ABD (doc tg ABD = tg ACE)
và góc ABC = góc ACB
=> góc DBC = góc ECB
Ta có: BD vuông góc AC (gt)
CF vuông góc AC (gt)
=> CF song song BD (2 dường thẳng cùng vuông góc với 1 dường thẳng)
=> góc DBC = góc BCF ( so le trong)
Mà góc DBC = góc ECB
=> góc ECB = góc BCF
=> BC lá tia phân giác của góc ECF
a, Xét tam giác ABD và tam giác ACE ta có :
AB = AC ( gt )
^ADB = ^AEC = 900
^A _ chung
Vậy tam giác ABD = tam giác ACE ( ch - gn )
b,Vì H là giao điểm của 2 đường cao BD ; CE
=> AH là đường cao
mà tam giác ABC cân tại A
=> AH đồng thời là đường trung tuyến
mà I thuộc AH
=> AI là đường trung tuyến
=> IB = IC => I là trung điểm BC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{DAB}\) chung
Do đó: ΔABD=ΔACE
cho tam giác ABC cân tại A,Â<90.Hai đường cao BD va CE cắt nhau tại H.Tia BH cắt nhau tại I
a/CM:tam giác ABD=tam giac ACE
b/CM:Ila trung diểm của BC
c/CM;TAM GIÁC BHC can
cho tam giác ABC cân tại A ( A < 90 độ ) . Kẻ BD vuông góc Ac ( D thuộc AC ) , CE vuông góc AB ( E thuộc AB ) , BD và CE cắt nhau tại H . a, CM : BD = CE . b, CM : tam giác BHC cân . c, CM : AH là đường trung trực của BC . d, TRên tia BD lấy điểm K sao cho D là trung điểm của BK . So sánh ECB và DKC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là 2 tia phân giác của góc xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC cân tại A, trên tia đối của tia BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB, EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC
Cho tam giác ABC cân tại a có BD và CE là các đường cao a) chứng minh tam giác ABD = tam giác ACE và tam giác BDC = tam giác CEB b) gọi h là giao điểm của BD và CE .chứng minh AH đi qua trung điểm của BC
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BC chung
BD=CE(ΔABD=ΔACE)
Do đó: ΔBDC=ΔCEB(cạnh huyền-cạnh góc vuông)
Cho tam giác ABC cân tại A , góc A nhọn. Đường cao BD và CE cắt nhau tại H, vẽ điểm M là trung điểm của BC. Cm: a)BD = CE. b)ED // BC. c)Giao điểm A, H, M thẳng hàng. d)ED < BC.
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:
AB = AC (ΔABC cân tại A)
∠BAD chung
⇒ ΔABD = ΔACE (cạnh huyền - góc nhọn)
⇒ BD = CE (hai cạnh tương ứng)
Vậy BD = CE
cho tam giác abc cân tại a (góc a<90 độ). hai đường cao bd và ce cắt nhau tại h. tia ah cắt bc tại i.
a) Chứng minh tam giác ABD=tam giác ACE.
b) CM: I là trung điểm BC
c) từ c kẻ đường thẳng d vuông góc ac, d cắt đường thẳng ah tại f. CMR: CB là tia phân giác của góc FHC
d) Giả sử góc BAC=60 độ và ab =4 cm. tính khoảng cách từ B đến đường thẳng CF
Cho tam giác ABC cân đỉnh A. Hai đường cao BD và CE cắt nhau tại Ha) C/M: ED vuông góc AHb) Gọi I là trung điểm của AH, K là trung điểm của BC C/M: DI vuông góc với DK
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC(ΔBAC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC(Cạnh huyền-góc nhọn)
Suy ra: AD=AE(Hai cạnh tương ứng)
hay A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AE+EB=AB(E nằm giữa A và B)
AD+DC=AC(D nằm giữa A và C)
mà AE=AD(cmt)
và AB=AC(ΔABC cân tại A)
nên EB=DC
Xét ΔEBH vuông tại E và ΔDCH vuông tại D có
EB=DC(cmt)
\(\widehat{EBH}=\widehat{DCH}\)(ΔABD=ΔACE)
Do đó: ΔEBH=ΔDCH(Cạnh góc vuông-góc nhọn kề)
Suy ra: HE=HD(Hai cạnh tương ứng)
hay H nằm trên đường trung trực của ED(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AH là đường trung trực của ED
hay AH\(\perp\)ED(đpcm)
Cho tam giác ABC cân tại A. Kẻ đường cao BD và CE của tam giác ABC., gọi I là giao điểm của BD và CE. Tia AI cắt BC tại M. C/m:
a)M là trung điểm của BC.
b) Tam giác MED cân.
c) DE // BC