a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:
AB = AC (ΔABC cân tại A)
∠BAD chung
⇒ ΔABD = ΔACE (cạnh huyền - góc nhọn)
⇒ BD = CE (hai cạnh tương ứng)
Vậy BD = CE
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:
AB = AC (ΔABC cân tại A)
∠BAD chung
⇒ ΔABD = ΔACE (cạnh huyền - góc nhọn)
⇒ BD = CE (hai cạnh tương ứng)
Vậy BD = CE
Cho tam giác ABC cân tại A (góc A nhọn). Kẻ BD, CE là đường cao của tam giác ABC. Gọi H là giao điểm của BD và CE.
a) CM AD= AE
b) gọi M là trung điểm của BC. CM A,H,M thẳng hàng.
c) CM ED<BC
cho tam giác ABC cân tại A . Lấy điểm D thuộc AC , điểm E thuộc AB sao cho AD =AE
a, c/m BD =CE
b, Gọi I là giao điểm của BD và CE . C/M tam giác BIC cân
c, c/m ED // BC
D, C/M AI vuông BC
e, Các đường thẳng vuông góc vs AB,AC lần lượt tại B và C cắt nhau ở H c/m A,I,H thẳng hàng
cho tam giác ABC cân tại A , các đường phân giác BD;CE gặp nhau tại O . Gọi I là trung điểm BC , K là trung điểm của ED , CMR: a, tam giác AED cân ; b, ED//BC ; c, AI vuông góc ED ; d, BE=ED=DC ; e, A,I,O,K thẳng hàng ; g, Vẽ Bx là tia phân giác góc ngoài tại B , Bx cắt AI ở H . CMR : ECH =90 độ
Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BD vuông góc với AC (D thuộc AC), CE vuông góc với AB (E thuộc AB), BD và CE cắt nhau tại H
a) CM : Tam giác ABD = tam giác ACE
b) CM : Tam giác BHC cân
c) CM : ED // BC
d) AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm của HM. CM : tam giác ACM vuông
Cho tam giác ABC cân tại A ( góc A < 90o ) . Kẻ BD vuông góc cới AC ( D thuộc AC ) , CE vuông góc với AB ( E thuộc AB ), BD và CE cắt nhau tại H
a) CM : Tam giác ABD = tam giác ACE
b) CM : Tam giác BHC cân
c) CM : ED // BC
d) AH cắt BC tại K , trên tia HK lấy điểm M sao cho K là trung điểm của HM . CM : tam giác ACM vuông
Cho tam giác ABC có AB = AC , góc A < 60 độ . Các đường cao BD và CE cắt nhau tại H . CMR :
a. AE = AD
b. ED // BC
c. BC < AB
d. Gọi I , K lần lượt là trung điểm của ED và BC . CM A , I , H , K thẳng hàng
Cho tam giác ABC cân tại A(góc A=90).có BD ,CE là hai đường cao của tam giác(D thuộc AC,E thuộc AB).đường thẳng BD cắt CE tại H
a. Chứng minh BD=CE
b. Chứng minh tam giác ADE cân và DE song song với BC
c. Gọi M là trung điểm của BC. Chứng minh 3 điểm A,H,M thẳng hàng
Giúp mình vẽ hình và giải bài toán với ạ
cho tam giác abc vg tại a.Trên cạnh bc lấy điểm d sao cho bd=ab.Qua d vẽ đường thẳng vg góc với bc cắt tia đối của tia ab tại e.
a, C/m tam giác abc= tam giác dbe.
b,Gọi h là giao điểm của ed và ac.c/m:bh là tia phân giác của abc.
c,cho db = 6cm,dc= 4cm.Tính ab,ac.
d,Qua b vẽ đường thẳng vuông góc với ab cắt đường thẳng ed tại k.c/m tam giác kbh là tam giác cân.
e,Gọi f là trung điểm của ec.c/m ba điểm b,h,f thẳng hàng
cho tam giác ABC cân tại A ( góc A < 90 độ ). Kẻ BD vuông góc với AC ( D thuộc AC ), CE vuông góc với AB ( E thuộc AB ). BD cắt CE tại H.
a) cm tam giác ABD = tam giác ACE
b) CM tam giác BHC cân
c) Cm ED // BC
d) AH cắt BC tại K,trên tia HK lấy điểm M sao cho K là trung điểm của HM.Cm tam giác ACM vuông