BD cắt CE ở H => H là trực tâm của ΔABC
=> AE là đường cao của ΔABC
xét ΔAEB và ΔAEC có:
AE chung; AB = AC (gt) => ΔAEB = ΔAEC (ch - cgv)
=> AE = CE => E là trung điểm của BC
CM : Tam giác IEF cân ==> thiếu đề
BD cắt CE ở H => H là trực tâm của ΔABC
=> AE là đường cao của ΔABC
xét ΔAEB và ΔAEC có:
AE chung; AB = AC (gt) => ΔAEB = ΔAEC (ch - cgv)
=> AE = CE => E là trung điểm của BC
CM : Tam giác IEF cân ==> thiếu đề
Cho tam giác ABC cân(AB=AC). Các đường phân giác BE,CF cắt nhau tại H. a)chứng minh tam giác ABE=tam giác ACF b)tia AH cắt BC tại D.chứng minh D là trung điểm BC và EF//BC c)chứng minh AH là trung trực của EF.so sánh HF và HC d)tìm điều kiện của tam giác ABC để HC=2HD
cho tam giác ABC cân tại A có đường cao AH. E là trung điểm của AB. Đường thẳng vuông góc với AB tại E cắt AH tại F. Chứng minh FA = FC
Giải giúp mình với !!!
Cho tam giác ABC cân tại A. Gọi M, N là trung điểm các cạnh AB, AC. Các đường thẳng vuông góc với AB, AC tại M; N cắt nhau tại điểm O, AO cắt BC tại H. Chứng minh:
a) AMO =ANO
b) AH là phân giác của góc A
c) HB = HC và AH⊥ BC
d) So sánh OC và HB
cho tam giác abc cân tại a ab ac 25cm bc=30cm. gọi h là trung điểm của bc.
a, chứng minh ah vuông góc vs bc.
b. tính AH
c, lấy điểm D trên BC và điểm E trên AC sao cho AD = AE. tính tam giác ODB = tam giác OEC.
MN GIÚP MIK VỚI CẦN GẤP.
Cho tam giác ABC vuông tại A, đường cao AH.Gọi M,N lần lượt là trung điểm của AH,CH.
CM: a)M là trực tâm của tam giác ANB
b)BM vuông góc AN
Phần a e chưa học đường trung bình nên mong m.ng giải theo cách khác ạa!
cho tam giác ABC cân tại A. Vẽ đường cao BH và CK.BH và CK cắt nhau tại O
a) Chứng minh AO vuông góc với BC.
b) CHo OAB = 30 độ. tam giác ABC là tam giác gì? Vì sao
c) chứng minh tam giác AOB là t giác cân
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC (H ∈ BC).Gọi M là trung điểm của BH.Trên tia đối của của tia MA lấy điểm N sao cho MN=MA.
a,chứng minh tam giác AMH bằng tam giác MNB và NB vuông góc với BC.
b,chứng minh AH=NB từ đó suy ra NB<AB
. c,chứng minh góc BAM nhỏ hơn góc góc MAH.
d,Gọi I là trung điểm của NC.Chứng minh A,H,I thẳng hàng
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng
Cho ∆ABC cân tại A (góc A > 900 ). Từ B kẻ đường thẳng vuông góc với AC tại điểm E, Từ C kẻ đường thẳng vuông góc với AB tại điểm D.Gọi giao điểm của BE và CD là O
a) Chứng minh ∆𝐵𝐶𝐸 = ∆𝐶𝐵𝐷.
b) Gọi I là trung điểm của BC. Chứng minh ∆𝐼𝐸𝐷 là tam giác cân.
c) Chứng minh OI vuông góc với E D.
d) Trên tia CE lấy điểm F sao cho E là trung điểm của CF. So sánh: DBC và EFB
Cho tam giác ABC cân tại A , có góc A nhỏ hơn 90 độ ,M là trung điểm của đoạn BC
a, Chứng minh AM là trung điểm của BC
b, Đường trung trực d của AC cắt CB tại D . Chứng minh góc DAC = góc ABC
c, Trên tia đối của AD lấy E sao cho AE=BD . Chứng minh đường trung trực DE đi qua